满分5 > 高中数学试题 >

“x2-2x<0”是“|x|<2”成立的( ) A.充分不必要条件 B.必要不充...

“x2-2x<0”是“|x|<2”成立的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
解出不等式x2-2x<0和|x|<2的解集,分析它们之间的包含关系即可得出结论. 【解析】 由x2-2x<0得0<x<2,此时满足|x|<2,由|x|<2,得-2<x<2,取x=-1时,x2-2x>0, 所以“x2-2x<0”是“|x|<2”成立的充分不必要条件. 故选A.
复制答案
考点分析:
相关试题推荐
已知集合A=[x|3<x<7},B={x|2<x<10},则(CRA)∩B=( )
A.{x|7≤x<10}
B.{x|2<x≤3}
C.{x|2<x≤3或7≤x<10}
D.{x|2<x<3或7<x<10}
查看答案
设函数manfen5.com 满分网
(1)当a=0时,求f(x)的极值;
(2)当a≠0时,求f(x)的单调区间;
(3)当a=2时,对任意的正整数n,在区间manfen5.com 满分网上总有m+4个数使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试求正整数m的最大值.
查看答案
设椭圆manfen5.com 满分网的离心率manfen5.com 满分网,右焦点到直线manfen5.com 满分网的距离manfen5.com 满分网,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
查看答案
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为manfen5.com 满分网manfen5.com 满分网;两小时以上且不超过三小时还车的概率分别是为为manfen5.com 满分网manfen5.com 满分网;两人租车时间都不会超过四小时.
(Ⅰ)求甲乙两人所付的租车费用相同的概率.
(Ⅱ)设甲乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
如图甲,直角梯形ABCD中,AB∥CD,∠DAB=manfen5.com 满分网,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙).
(1)求证:AB∥平面DNC;
(2)当DN的长为何值时,二面角D-BC-N的大小为30°?

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.