满分5 > 高中数学试题 >

△ABC中,角A、B、C对边分别是a、b、c,满足. (Ⅰ)求角A的大小; (Ⅱ...

△ABC中,角A、B、C对边分别是a、b、c,满足manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)求manfen5.com 满分网的最大值,并求取得最大值时角B、C的大小.
(Ⅰ)通过化简向量的表达式,利用余弦定理求出A的余弦值,然后求角A的大小; (Ⅱ)通过A利用2012年6月7日 17:54:00想的内角和,化简为C的三角函数,通过C的范围求出表达式的最大值,即可求出最大值时角B、C的大小. 解 (Ⅰ)由已知, 化为2bccosA=a2-b2-c2-2bc,(2分) 由余弦定理a2=b2+c2-2bccosA得4bccosA=-2bc, ∴,(4分) ∵0<A<π,∴.(6分) (Ⅱ)∵,∴,. =.(8分) ∵,∴, ∴当C+=,取最大值, 解得B=C=.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+3bx2+cx+bc-2b3(b,c∈R),函数g(x)=m[f(x)]2+p(其中m.p∈R,且mp<0),给出下列结论:
①函数f(x)不可能是定义域上的单调函数;
②函数f(x)的图象关于点(-b,0)对称;
③函数g(x)=可能不存在零点(注:使关于x的方程g(x)=0的实数x叫做函数g(x)的零点);
④关于x的方程g(x)=0的解集不可能为{-1,1,4,5}.
其中正确结论的序号为    (写出所有正确结论的序号). 查看答案
manfen5.com 满分网如图,已知F1,F2是椭圆C:manfen5.com 满分网(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为    查看答案
在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为    查看答案
已知i是虚数单位,复数2i5+(1-i)2=    查看答案
已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且manfen5.com 满分网,则满足条件的函数f(x)有( )
A.6个
B.10个
C.12个
D.16个
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.