满分5 > 高中数学试题 >

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m...

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(Ⅰ)求m与n的关系表达式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.
(Ⅰ)求出f′(x),因为x=1是函数的极值点,所以得到f'(1)=0求出m与n的关系式; (Ⅱ)令f′(x)=0求出函数的极值点,讨论函数的增减性确定函数的单调区间; (Ⅲ)函数图象上任意一点的切线斜率恒大于3m即f′(x)>3m代入得到不等式即3m(x-1)[x-(1+)]>3m,又因为m<0,分x=1和x≠1,当x≠1时g(t)=t-,求出g(t)的最小值.要使<(x-1)-恒成立即要g(t)的最小值>,解出不等式的解集求出m的范围. 【解析】 (Ⅰ)f′(x)=3mx2-6(m+1)x+n. 因为x=1是f(x)的一个极值点,所以f'(1)=0,即3m-6(m+1)+n=0. 所以n=3m+6. (Ⅱ)由(Ⅰ)知f′(x)=3mx2-6(m+1)x+3m+6=3m(x-1)[x-(1+)] 当m<0时,有1>1+,当x变化时f(x)与f'(x)的变化如下表: 由上表知,当m<0时,f(x)在(-∞,1+)单调递减,在(1+,1)单调递增,在(1,+∞)单调递减. (Ⅲ)由已知,得f′(x)>3m,即3m(x-1)[x-(1+)]>3m, ∵m<0.∴(x-1)[x-1(1+)]<1.(*) 1x=1时.(*)式化为0<1怛成立. ∴m<0. 2x≠1时∵x∈[-1,1],∴-2≤x-1<0. (*)式化为<(x-1)-. 令t=x-1,则t∈[-2,0),记g(t)=t-, 则g(t)在区间[-2,0)是单调增函数.∴g(t)min=g(-2)=-2-=-. 由(*)式恒成立,必有<-⇒-<m,又m<0.∴-<m<0. 综上1、2知-<m<0.
复制答案
考点分析:
相关试题推荐
椭圆的中心是原点O,它的短轴长为manfen5.com 满分网,相应于焦点F(c,0)(c>0)的准线l与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程及离心率;
(2)若manfen5.com 满分网,求直线PQ的方程.
查看答案
如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=manfen5.com 满分网,M为BC的中点.
(Ⅰ)证明:AM⊥PM;     
(Ⅱ)求点D到平面AMP的距离.

manfen5.com 满分网 查看答案
某学校共有高一、高二、高三学生2000名,各年级男、女生人数如图:manfen5.com 满分网
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(3)已知y≥245,z≥245,求高三年级中女生比男生多的概率.
查看答案
在△ABC中,角A,B,C的对边分别为a  bc且manfen5.com 满分网
求:
(Ⅰ)manfen5.com 满分网的值;
(Ⅱ)b的值.
查看答案
若定义在区间D上的函数f(x)对于D上的任意n个值x1,x2,…,xn总满足,manfen5.com 满分网manfen5.com 满分网则称f(x)为D上的凸函数,现已知f(x)=cosx在(0,manfen5.com 满分网)上是凸函数,则在锐角△ABC中,cosA+cosB+cosC的最大值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.