满分5 > 高中数学试题 >

已知椭圆C:的离心率为,直线l过点A(4,0),B(0,2),且与椭圆C相切于点...

已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,直线l过点A(4,0),B(0,2),且与椭圆C相切于点P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点A(4,0)的直线m与椭圆C相交于不同的两点M、N,使得36|AP|2=35|AM|•|AN|?若存在,试求出直线m的方程;若不存在,请说明理由.
(Ⅰ)由题得过两点A(4,0),B(0,2),直线l的方程为x+2y-4=0.因为,所以a=2c,b=.再由直线l与椭圆C相切,能求出椭圆方程. (Ⅱ)设直线m的方程为y=k(x-4),由,得(3+4k2)x2-32k2x+64k2-12=0.由题意知△=(32k2)2-4(3+4k2)(64k2-12)>0,解得-<k<.设M(x1,y1),N(x2,y2),则,.由此能求出直线m的方程. 【解析】 (Ⅰ)由题得过两点A(4,0),B(0,2),直线l的方程为x+2y-4=0.…(1分) 因为,所以a=2c,b=. 设椭圆方程为, 由,消去x得,4y2-12y+12-3c2=0. 又因为直线l与椭圆C相切,所以△=122-4×4(12-3c2)=0,解得c2=1. 所以椭圆方程为.…(5分) (Ⅱ)∵直线m的斜率存在,∴设直线m的方程为y=k(x-4),…(6分) 由,消去y, 整理得(3+4k2)x2-32k2x+64k2-12=0.…(7分) 由题意知△=(32k2)2-4(3+4k2)(64k2-12)>0, 解得-<k<.…(8分) 设M(x1,y1),N(x2,y2), 则,.…(9分) 又直线l:x+2y-4=0与椭圆C:相切, 由, 解得,所以P(1,).…(10分) 则.所以|AM|•|AN|==. 又• =• =(k2+1)(4-x1)(4-x2) = =(k2+1)(-4×+16) =(k2+1)•. 所以(k2+1)•=,解得k=.经检验成立.…(13分) 所以直线m的方程为y=.…(14分)
复制答案
考点分析:
相关试题推荐
某人进行射击训练,击中目标的概率是manfen5.com 满分网,且各次射击的结果互不影响.
(Ⅰ)假设该人射击5次,求恰有2次击中目标的概率;
(Ⅱ)假设该人每射击5发子弹为一组,一旦命中就停止,并进入下一组练习,否则一直打完5发子弹才能进入下一组练习,求:
①在完成连续两组练习后,恰好共使用了4发子弹的概率;
②一组练习中所使用子弹数ξ的分布列,并求ξ的期望.
查看答案
如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:平面PAC平面BEF;
(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.

manfen5.com 满分网 查看答案
已知数列{an}是等差数列,a3=10,a6=22,数列{bn}的前n项和是Tn,且manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}是等比数列;
(Ⅲ)记cn=an•bn,求证:cn+1<cn
查看答案
已知函数manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求方程f(x)=0的根;
(Ⅱ)求f(x)的最大值和最小值.
查看答案
选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
(1)(坐标系与参数方程选做题) 在极坐标系下,已知直线l的方程为ρcos(θ-manfen5.com 满分网)=manfen5.com 满分网,则点M(1,manfen5.com 满分网)到直线l的距离为   
(2)(几何证明选讲选做题) 如图,P为圆O外一点,由P引圆O的切线PA与圆O切于A点,引圆O的割线PB与圆O交于C点.已知AB⊥AC,PA=2,PC=1.则圆O的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.