设函数
.
(1)当a=0时,求f(x)的极值;
(2)设
,在[1,+∞)上单调递增,求a的取值范围;
(3)当a≠0时,求f(x)的单调区间.
考点分析:
相关试题推荐
设椭圆
的离心率
,右焦点到直线
的距离
,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
查看答案
某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12-x)
2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).
查看答案
如图,直棱柱ABCD-A
1B
1C
1D
1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°AB=2AD=2CD=2.
(1)求证:AC⊥平面BB
1C
1C;
(2)在A
1B
1上是否存一点P,使得DP与平面BCB
1与平面ACB
1都平行?证明你的结论.
查看答案
已知等差数列{a
n}的前n项和为S
n,且a
6=-5,S
4=-62.
(1)求{a
n}通项公式;
(2)求数列{|a
n|}的前n项和T
n.
查看答案
如图,某观测站C在城A的南偏西20°方向上,从城A出发有一条公路,走向是南偏东40°,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?
查看答案