已知函数
在x=1处取得极值2,
(1)求f(x)的解析式;
(2)设A是曲线y=f(x)上除原点O外的任意一点,过OA的中点且垂直于x轴的直线交曲线于点B,试问:是否存在这样的点A,使得曲线在点B处的切线与OA平行?若存在,求出点A的坐标;若不存在,说明理由;
(3)设函数g(x)=x
2-2ax+a,若对于任意x
1∈R的,总存在x
2∈[-1,1],使得g(x
2)≤f(x
1),求实数a的取值范围.
考点分析:
相关试题推荐
已知圆C的圆心为C(m,0),m<3,半径为
,圆C与椭圆E:
有一个公共点A(3,1),F
1,F
2分别是椭圆的左、右焦点.
(1)求圆C的标准方程
(2)若点P的坐标为(4,4),试探究斜率为k的直线PF
1与圆C能否相切,若能,求出椭圆E和直线PF
1的方程;若不能,请说明理由.
查看答案
如图,在直四棱柱ABCD-A
1B
1C
1D
1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,E、F是AA
1、AB的中点.
(Ⅰ)证明:直线EE
1∥平面FCC
1;
(Ⅱ)求二面角B-FC
1-C的余弦值.
查看答案
某地工商局对本地流通的某品牌牛奶进行质量监督抽查,结果显示,刚刚销售的一批牛奶合格率为80%.
(1)若甲从超市购得2瓶,恰都为合格品的概率;
(2)若甲每天喝2瓶牛奶,求三天中喝到不合格牛奶的天数的期望.
查看答案
设数列{a
n}的前n项和为S
n,且S
n=(λ+1)-λa
n(λ≠0,-1).
(1)求{a
n}的通项公式;
(2)若
的值存在,求λ的取值范围.
查看答案
在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac=
b
2.
(Ⅰ)当p=
,b=1时,求a,c的值;
(Ⅱ)若角B为锐角,求p的取值范围.
查看答案