(1)将f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的最大值为1,及函数最大值是2,列出关于m的方程,求出方程的解即可得到m的值;
(2)由f(A)=1及第一问确定的函数解析式,得到sin(2A+)的值,由A为三角形的内角,求出2A+的范围,利用特殊角的三角函数值求出2A+的值,得到A的度数,利用正弦定理化简sinB=3sinC,得到b与c的方程,由三角形的面积公式表示出三角形ABC的面积,将已知的面积及sinA的值代入,得到b与c的另一个方程,联立两方程求出b与c的长,再由cosA的值,利用余弦定理即可求出a的长.
【解析】
(1)f(x)=2sinx•cosx+2cos2x+m
=sin2x+(1+cos2x)+m
=2(sin2x+cos2x)+m+1
=2sin(2x+)+m+1,
∵x∈[0,],∴2x+∈[,],
∵正弦函数在区间[,]上是增函数,在区间[,]上是减函数,
∴当2x+=,即x=时,函数f(x)在区间[0,]上取到最大值,
由f(x)max=m+3=2,解得:m=-1;
(2)由m=-1,得到f(x)=2sin(2x+),
∵f(A)=1,∴2sin(2A+)=1,
∴sin(2A+)=,,又2A+∈[,],
解得:A=0(舍去)或A=,
∵sinB=3sinC,
∴利用正弦定理化简得:b=3c①,
∵△ABC面积为,A=,即sinA=,
∴S△ABC=bcsinA=bcsin=,
整理得:bc=3②,
联立①②,解得:b=3,c=1,
∵a2=b2+c2-2bc•cosA=32+12-2×3×1×cos=7,
∴a=.