(I)证明CD⊥平面PAD,利用面面垂直的判定,可证平面ECD⊥平面PAD;
(II)过点D作DF⊥CE,过点F作FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角,先利用AD⊥平面PAB,故AD⊥AE,从而求得DE,在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.
(I)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,
∵底面ABCD为矩形,∴AD⊥CD
∵PA∩AD=A,∴CD⊥平面PAD
∵CD⊂平面ECD,
∴平面ECD⊥平面PAD;
(II)【解析】
过点D作DF⊥CE,过点F作FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.
∵AD⊥AB,AD⊥PA,AB∩PA=A,∴AD⊥平面PAB,∴AD⊥AE,从而DE=
在Rt△CBE中,CE==,
∵CD=,∴△CDE为等边三角形,故F为CE的中点,且DF=CD•sin60°=
因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=AE,
从而FG=,且G点为AC的中点,连接DG,则在Rt△ADC中,DG==,
所以cos∠DFG==.