满分5 > 高中数学试题 >

函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))...

函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(1)若y=f(x)在x=-2时有极值,求f (x)的表达式;
(Ⅱ)在(1)的条件下,求y=f(x)在[-3,1]上最大值;
(Ⅲ)若函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
(I)求出导函数在x=1处的值,利用点斜式写出切线方程,化为斜截式令其斜率为3,纵截距为1,令导函数在-2处的值为0,列出方程组,求出f(x)的解析式. (II)求出f(x)的导函数,令导函数为0,求出根,列出x,f(x),f′(x)的变化表,求出极大值,端点值,求出函数 f(x)的最大值. (III)方法一:求出导函数,令导函数大于大于0在区间[-2,1]上恒成立,通过对对称轴与区间位置关系的讨论,求出f′(x)的最小值,令最小值大于等于0,求出b的范围. 方法二:求出导函数,令导函数大于大于0在区间[-2,1]上恒成立,分离出参数b,构造新函数m(x),利用基本不等式求出m(x)的最大值,令b大于等于m(x)的最大值即可. 解(Ⅰ) (Ⅱ)f'(x)=3x2+2ax+b=3x2+4x-4=(3x-2)(x+2) x [-3,-2) -2 f'(x) + - + f(x) 极大 极小 f(x)极大=f(-2)=(-2)3+2(-2)2-4(-2)+5=13  f(1)=13+2×1-4×1+5=4 ∴f(x)在[-3,1]上最大值为13                     …(8分) (Ⅲ)y=f(x)在区间[-2,1]上单调递增 又f'(x)=3x2+2ax+b,由(1)知2a+b=0∴f'(x)=3x2-bx+b 依题意f'(x)在[-2,1]上恒有f'(x)≥0,即g(x)=3x2-bx+b≥0在[-2,1]上恒成立. ①在 ②在∴b∈ ③在 综合上述讨论可知,所求参数b取值范围是:b≥0…(12分) 或者(Ⅲ)y=f(x)在区间[-2,1]上单调递增 又f'(x)=3x2+2ax+b,由(1)知2a+b=0∴f'(x)=3x2-bx+b 依题意f'(x)在[-2,1]上恒有f'(x)≥0,即g(x)=3x2-bx+b≥0在[-2,1]上恒成立∴ 令m(x)=3(x-1)+(x≤1) 则m(x)
复制答案
考点分析:
相关试题推荐
某城市最近出台一项机动车驾照考试的规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.
(Ⅰ)求在一年内李明参加驾照考试次数X的分布列和X的数学期望;
(Ⅱ)求李明在一年内领到驾照的概率.
查看答案
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=manfen5.com 满分网PD.
(I)证明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设A,B,C为△ABC的三个内角,若cosB=manfen5.com 满分网,f(manfen5.com 满分网)=-manfen5.com 满分网,求sinA.
查看答案
已知函数f(x)=manfen5.com 满分网 (x∈R)),给出下列命题:
(1)对∀∈R,等式f(-x)+f(x)=0恒成立;
(2)函数f(x)的值域为(-1,1);
(3)若x1≠x2,则一定有f(x1)≠f(x2);
(4)函数g(x)=f(x)-x在R上有三个零点.
其中正确命题的序号为    (把所有正确命题的序号都填上). 查看答案
若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},记x为抛掷一枚骰子出现的点数,则x∈A∩B的概率等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.