已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a
n}的前n项和为S
n,点(n,S
n)(n∈N
*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设
,T
n是数列{b
n}的前n项和,求使得
对所有n∈N
*都成立的最小正整数m;
考点分析:
相关试题推荐
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
函数f(x)=x
3+ax
2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(1)若y=f(x)在x=-2时有极值,求f (x)的表达式;
(Ⅱ)在(1)的条件下,求y=f(x)在[-3,1]上最大值;
(Ⅲ)若函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
查看答案
某城市最近出台一项机动车驾照考试的规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.
(Ⅰ)求在一年内李明参加驾照考试次数X的分布列和X的数学期望;
(Ⅱ)求李明在一年内领到驾照的概率.
查看答案
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.
(I)证明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案
设函数
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设A,B,C为△ABC的三个内角,若cosB=
,f(
)=-
,求sinA.
查看答案