满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,...

manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.
(Ⅰ)证明线面平行,可以利用线面平行的判定定理,只要证明 A1B∥OD即可; (Ⅱ)可判断BA,BC,BB1两两垂直,建立空间直角坐标系,用坐标表示点与向量,求得平面ADC1的法向量、平面ADC的法向量,利用向量数量积可求二面角C1-AD-C的余弦值; (Ⅲ)假设存在满足条件的点E,根据AE与DC1成60°角,利用向量的数量积,可得结论. (Ⅰ)证明:连接A1C,交AC1于点O,连接OD. 由ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点. 又D为BC中点,所以OD为△A1BC中位线, 所以 A1B∥OD, 因为 OD⊂平面ADC1,A1B⊄平面ADC1, 所以 A1B∥平面ADC1.…(4分) (Ⅱ)【解析】 由ABC-A1B1C1是直三棱柱,且∠ABC=90°, 故BA,BC,BB1两两垂直. 如图建立空间直角坐标系B-xyz.设BA=2,则B(0,0,0),C(2,0,0),A(0,2,0),C1(2,0,1),D(1,0,0). 所以 , 设平面ADC1的法向量为=(x,y,z),则有 所以 取y=1,得=(2,1,-2). 平面ADC的法向量为=(0,0,1). 由二面角C1-AD-C是锐角,得 .…(8分) 所以二面角C1-AD-C的余弦值为. (Ⅲ)【解析】 假设存在满足条件的点E. 因为E在线段A1B1上,A1(0,2,1),B1(0,0,1),故可设E(0,λ,1),其中0≤λ≤2. 所以 ,. 因为AE与DC1成60°角,所以. 即,解得λ=1,舍去λ=3. 所以当点E为线段A1B1中点时,AE与DC1成60°角.…(12分)
复制答案
考点分析:
相关试题推荐
某品牌专卖店准备在国庆期间举行促销活动,根据市场调查,该店决定从2种不同型号的洗衣机,2种不同型号的电视机和3种不同型号的空调中(不同种商品的型号不同),选出4种不同型号的商品进行促销,该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买任何一种型号的商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得m(m>0)元奖金.假设顾客每次抽奖时获奖与否的概率都是manfen5.com 满分网
(Ⅰ)求选出的4种不同型号商品中,洗衣机、电视机、空调都至少有一种型号的概率;
(Ⅱ)(文科)若顾客购买两种不同型号的商品,求中奖奖金至少2m元的概率;
     (理科)设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量X.请写出X的分布列,并求X的数学期望;
(Ⅲ)(理科)在(Ⅱ)的条件下,问该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?
查看答案
已知函数f(x)=cos(x-manfen5.com 满分网)-mcosx的图象过点p(0,-manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期以及对称中心坐标;
(Ⅱ)△ABC内角A,B,C的对边分别为a,b,c,若f(B)=-manfen5.com 满分网,b=1,c=manfen5.com 满分网,且a>b,试判断△ABC的形状,并说明理由.
查看答案
已知数列{an}:a1a2,…,an(0≤a1<a2…<an),n≥3时具有性质P:对任意的i,j(1≤i<j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项,现给出以下四个命题:
①数列0,1,3具有性质P;         ②数列0,2,4,6具有性质P;
③数列{an}具有性质P,则a1=0;    ④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题的序号为    .(所有正确命题的序号都写上) 查看答案
若A,B,C为△ABC的三个内角,则manfen5.com 满分网的最小值为    查看答案
根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20-80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.据《法制晚报》报道,2010年3月15日至3 月28日,全国查处酒后驾车和醉酒驾车共28800人,如图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.