满分5 > 高中数学试题 >

在△ABC中,内角A、B、C对边长分别是a,b,c,已知c=2,C= (I)若△...

在△ABC中,内角A、B、C对边长分别是a,b,c,已知c=2,C=manfen5.com 满分网
(I)若△ABC的面积等于manfen5.com 满分网
(II)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
(I)由C的度数求出sinC和cosC的值,利用余弦定理表示出c2,把c和cosC的值代入得到一个关于a与b的关系式,再由sinC的值及三角形的面积等于,利用面积公式列出a与b的另一个关系式,两个关系式联立即可即可求出a与b的值; (II)由三角形的内角和定理得到C=π-(A+B),进而利用诱导公式得到sinC=sin(A+B),代入已知的等式中,左边利用和差化积公式变形,右边利用二倍角的正弦函数公式变形,分两种情况考虑:若cosA为0,得到A和B的度数,进而根据直角三角形的性质求出a与b的值;若cosA不为0,等式两边除以cosA,得到sinB=2sinA,再利用正弦定理化简得到b=2a,与第一问中余弦定理得到的a与b的关系式联立,求出a与b的值,综上,由求出的a与b的值得到ab的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积. 【解析】 (I)∵c=2,C=60°, 由余弦定理c2=a2+b2-2abcosC得:a2+b2-ab=4, 根据三角形的面积S=,可得ab=4, 联立方程组, 解得a=2,b=2; (II)由题意 sin(B+A)+sin(B-A)=4sinAcosA, 即sinBcosA=2sinAcosA, ; 当cosA≠0时,得sinB=2sinA, 由正弦定理得b=2a, 联立方程组 解得a=. 所以△ABC的面积S=.
复制答案
考点分析:
相关试题推荐
选做题:考生在下面两小题中,任选一道作答,如果全做则按第1小题评分.
(1)《几何证明选讲》选做题
如图,半径分别为a和3a的圆O1与圆O2外切于T,自圆O2上一点P引圆O1的切线,切点为Q,若PQ=2a,则PT=   
(2)《坐标系与参数方程》选做题
从极点O作射线交直线ρcosθ=3于点M,P为线段OM上的点,且|OM|•|OP|=12,则P点轨迹的极坐标方程为   
manfen5.com 满分网 查看答案
设区间(0,1)内的实数x对应数轴上的点M(如图),将线段AB围成一个圆,使两端A、B恰好重合,再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),射线AM与ox轴交于点N(f(x),0)根据这一映射法则可得f(x)与x的函数关系式为   
manfen5.com 满分网 查看答案
患感冒与昼夜温差大小相关,居居小区诊所的某医生记录了四月份四个周一的温差情况与因患感冒到诊所看病的人数如下表:
昼夜温差x(℃)1113128
感冒就诊人数y(人)25292616
用最小二乘法求出y关于x的线性回归方程为   
(参考公式:manfen5.com 满分网.) 查看答案
已知空间直角坐标系0-xyz中的动点P(x,y,z)满足:x+manfen5.com 满分网y+z=1,则|OP|的最小值等于    查看答案
已知二项式manfen5.com 满分网展开式的常数项为manfen5.com 满分网,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.