满分5 > 高中数学试题 >

选修4-4坐标系与参数方程 在平面直角坐标系中,取原点为极点x轴正半轴为极轴建立...

选修4-4坐标系与参数方程
在平面直角坐标系中,取原点为极点x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为:ρ=2cosθ,直线C2的参数方程为:manfen5.com 满分网(t为参数)
(I )求曲线C1的直角坐标方程,曲线C2的普通方程.
(II)先将曲线C1上所有的点向左平移1个单位长度,再把图象上所有点的横坐标伸长到原来的manfen5.com 满分网倍得到曲线C3,P为曲线C3上一动点,求点P到直线C2的距离的最小值,并求出相应的P点的坐标.
(I) 利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得C1为直角坐标方程;消去参数t得曲线C2的普通方程 (II)曲线C3上的方程为=1,设点P(,sinθ),点P到直线的距离为d==,利用三角函数的性质求解. 【解析】 (I )C1的极坐标方程为:ρ=2cosθ,即:ρ2=2ρcosθ, 化为直角坐标方程为x2+y2=2x,即为(x-1)2+y2=1 直线C2的参数方程为:(t为参数), 消去t得普通方程为x-y+4=0 (II)曲线C3上的方程为=1 设点P(,sinθ),点P到直线的距离为d== 由三角函数的性质知,当=π是,d取得最小值,此时, 所以P点的坐标为()
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=manfen5.com 满分网,圆O的半径为3,求OA的长.

manfen5.com 满分网 查看答案
已知函数f(x)=x2+bsinx-2(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x)-F(-x)=0.
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调递减,求实数a的取值范围;
(3)函数h(x)=ln(1+x2)-manfen5.com 满分网f(x)-k,(k∈R),试判断函数h(x)的零点个数?
查看答案
焦点在x轴上,离心率为manfen5.com 满分网的椭圆经过点(manfen5.com 满分网,1).
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线l1,l2分别与椭圆交于A,B和C,D,是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,求出实数λ的值;若不存在,请说明理由.
查看答案
四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形.
(I)若F为AC的中点,当点M在棱AD上移动时,是否总有BF丄CM,请说明理由.
(II)求三棱锥的高.

manfen5.com 满分网 查看答案
衡阳市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为manfen5.com 满分网
优秀非优秀合计
甲班10
乙班30
合计110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:manfen5.com 满分网
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.