设f(x)=ln(|x-1|+m|x-2|-3)(m∈R)
(Ⅰ)当m=1时,求函数f(x)的定义域;
(Ⅱ)若当1
,f(x)≥0恒成立,求实数m的取值范围.
考点分析:
相关试题推荐
已知直线l:
(t为参数),曲线C
1:
(θ为参数).
(Ⅰ)设l与C
1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C
1上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线C
2,设点P是曲线C
2上的一个动点,求它到直线l的距离的最小值.
查看答案
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=
,⊙O的半径为3,求OA的长.
查看答案
已知函数f(x)=lnx-ax+
(a∈R).
(Ⅰ)当a
时,讨论f(x)的单调性;
(Ⅱ)当a=0时,对于任意的n∈N
+,且n≥2,证明:不等式
>
-
.
查看答案
已知椭圆
经过点
,且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
查看答案
如图,四棱锥P-ABCD的底面ABCD为菱形,PA⊥平面ABCD,PA=PB=2,E、F分别为CD、PB的中点,AE=
.
(Ⅰ)求证:平面AEF⊥平面PAB.
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的余弦值.
查看答案