满分5 > 高中数学试题 >

已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},则A∩...

已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},则A∩(∁UB)=( )
A.{x|x>1}
B.{x|x>0}
C.{x|0<x<1}
D.{x|x<0}
解指数不等式可以求出集合A,解对数不等式可以求出集合B,进而求出∁UB,根据集合并集运算的定义,代入可得答案. 【解析】 ∵A={x|0<2x<1}{x|x<0}, B={x|log3x>0}={x|x>1}, 所以CUB={x|x≤1}, ∴A∩(CUB)={x|x<0}. 故选D
复制答案
考点分析:
相关试题推荐
设f(x)=ln(|x-1|+m|x-2|-3)(m∈R)
(Ⅰ)当m=1时,求函数f(x)的定义域;
(Ⅱ)若当1manfen5.com 满分网,f(x)≥0恒成立,求实数m的取值范围.
查看答案
已知直线l:manfen5.com 满分网(t为参数),曲线C1manfen5.com 满分网(θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的manfen5.com 满分网倍,纵坐标压缩为原来的manfen5.com 满分网倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.
查看答案
manfen5.com 满分网如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求OA的长.
查看答案
已知函数f(x)=lnx-ax+manfen5.com 满分网(a∈R).
(Ⅰ)当amanfen5.com 满分网时,讨论f(x)的单调性;
(Ⅱ)当a=0时,对于任意的n∈N+,且n≥2,证明:不等式manfen5.com 满分网manfen5.com 满分网-manfen5.com 满分网
查看答案
已知椭圆manfen5.com 满分网经过点manfen5.com 满分网,且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线manfen5.com 满分网交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.