满分5 > 高中数学试题 >

已知a,b都是实数,那么“a2>b2”是“a>b”的( ) A.充分而不必要条件...

已知a,b都是实数,那么“a2>b2”是“a>b”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
首先由于“a2>b2”不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.故“a2>b2”是“a>b”的既不充分也不必要条件. 【解析】 ∵“a2>b2”既不能推出“a>b”; 反之,由“a>b”也不能推出“a2>b2”. ∴“a2>b2”是“a>b”的既不充分也不必要条件. 故选D.
复制答案
考点分析:
相关试题推荐
满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( )
A.1
B.2
C.3
D.4
查看答案
设函数f(x)=ex(e为自然对数的底数),manfen5.com 满分网(n∈N*).
(1)证明:f(x)≥g1(x);
(2)当x>0时,比较f(x)与gn(x)的大小,并说明理由;
(3)证明:manfen5.com 满分网(n∈N*).
查看答案
已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前 n项和,且满足manfen5.com 满分网,n∈N*.数列{bn}满足manfen5.com 满分网,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和数列{bn}的前n项和Tn
(2)若对任意的n∈N*,不等式manfen5.com 满分网恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求manfen5.com 满分网的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.
查看答案
如图,侧棱垂直底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0).
(Ⅰ)当AA1=AB=AC时,求证:A1C⊥平面ABC1
(Ⅱ)若二面角A-BC1-C的平面角的余弦值为manfen5.com 满分网,试求实数t的值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.