先将原问题转化为平面内的最大距离问题解决,以O为原点,OA为y轴,OC为x轴建立直角坐标系,B、O两点间的距离表示处理,结合三角函数的性质求出其最大值即可.
【解析】
将原问题转化为平面内的最大距离问题解决,
以O为原点,OA为y轴,OC为x轴建立直角坐标系,如图.
设∠ACO=θ,B(x,y),则有:x=ACcosθ+BCsinθ=2cosθ+sinθ,y=BCcosθ=cosθ.
∴x2+y2=4cos2θ+4sinθcosθ+1=2cos2θ+2sin2θ+3=2sin(θ+)+3,
当sin(θ+)=1时,x2+y2最大,为2+3,
则B、O两点间的最大距离为1+
故答案为:1+.