满分5 > 高中数学试题 >

已知命题p:∃x∈R,使;命题q:∀x∈R,都有x2+x+1>0.给出下列结论:...

已知命题p:∃x∈R,使manfen5.com 满分网;命题q:∀x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是( )
A.②③
B.②④
C.③④
D.①②③
根据正弦函数的值域及二次不等式的解法,我们易判断命题p:∃x∈R,使sin x=与命题q:∀x∈R,都有x2+x+1>0的真假,进而根据复合命题的真值表,易判断四个结论的真假,最后得到结论. 【解析】 ∵>1,结合正弦函数的性质,易得命题p:∃x∈R,使sin x=为假命题, 又∵x2+x+1=(x+)2+>0恒成立,∴q为真命题,故非p是真命题,非q是假命题; 所以①p∧q是假命题,错; ②p∧非q是假命题,正确; ③非p∨q是真命题,正确; ④命题“¬p∨¬q”是假命题,错; 故答案为:②③ 故选A.
复制答案
考点分析:
相关试题推荐
复数manfen5.com 满分网在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案
通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=manfen5.com 满分网
(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?
查看答案
已知f(x)=ax3-x2+bx+c,(a,b,c∈R且a≠0)在(-∞,0)上是增函数,在[0,3]上是减函数,且方程f(x)=0有三个实根.
(1)求b的值;
(2)求实数a的取值范围.
查看答案
设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求manfen5.com 满分网manfen5.com 满分网的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,求直线l的斜率k的取值范围.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.
(1)求证:AC⊥BC1
( 2)求证:AC1∥平面CDB1

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.