根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1.根据函数奇偶性的定义,可得f(x)是偶函数,①正确;根据函数的表达式,结合有理数和无理数的性质,得②正确;取x1=-,x2=0,x3=,可得A(,0)、B(0,1)、C(-,0)三点恰好构成等边三角形,得③正确.
【解析】
∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0
∴当x为有理数时,ff((x))=f(1)=1;当x为无理数时,ff((x))=f(0)=1
即不管x是有理数还是无理数,均有f(f(x))=1
接下来判断三个命题的真假
对于①,因为有理数的相反数还是有理数,无理数的相反数还是无理数,
所以对任意x∈R,都有f(-x)=-f(x),故①正确;
对于②,若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数
∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故②正确;
对于③,取x1=-,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0
∴A(,0),B(0,1),C(-,0),恰好△ABC为等边三角形,故③正确.
故答案为:1 ①②③