满分5 > 高中数学试题 >

第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好...

第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

manfen5.com 满分网
(1)由题意及茎叶图,有“高个子”12人,“非高个子”18人,利用用分层抽样的方法,每个人被抽中的概率是,利用对立事件即可; (2)由于从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,利用离散型随机变量的定义及题意可知ξ的取值为0,1,2,3在利用古典概型的概率公式求出每一个值对应事件的概率,有期望的公式求出即可. 【解析】 (1)根据茎叶图,有“高个子”12人,“非高个子”18人, 用分层抽样的方法,每个人被抽中的概率是, 所以选中的“高个子”有人,“非高个子”有人. 用事件A表示“至少有一名“高个子”被选中”,则它的对立事件表示“没有一名“高个子”被选中”, 则P(A)=1-=. 因此,至少有一人是“高个子”的概率是. (2)依题意,ξ的取值为0,1,2,3. ,,,. 因此,ξ的分布列如下: ξ 1 2 3 p ∴.
复制答案
考点分析:
相关试题推荐
已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成角为θ,点B1在底面上的射影D落在BC上.
(1)求证:AC⊥平面BB1C1C;
(2)若manfen5.com 满分网,且当AC=BC=AA1=3时,求二面角C-AB-C1的大小.

manfen5.com 满分网 查看答案
设数列{an}满足条件a1=8,a2=0,a3=-7,且数列{an+1-an}(n∈N*)是等差数列.
(1)设cn=an+1-an,求数列{cn}的通项公式;
(2)若manfen5.com 满分网
查看答案
△ABC的三个内角A,B,C所对的边分别为a,b,c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求A的大小;
(Ⅱ) a=1,B=45°,求△ABC的面积.
查看答案
已知manfen5.com 满分网1的展开式中的常数项为T,f(x)是以T为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是    查看答案
已知实数x,y满足manfen5.com 满分网,则manfen5.com 满分网的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.