满分5 > 高中数学试题 >

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左...

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为manfen5.com 满分网立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.

manfen5.com 满分网
(1)由圆柱和球的体积的表达式,得到l和r的关系.再由圆柱和球的表面积公式建立关系式,将表达式中的l用r表示.并注意到写定义域时,利用l≥2r,求出自变量r的范围. (2)用导数的知识解决,注意到定义域的限制,在区间(0,2]中,极值未必存在,将极值点在区间内和在区间外进行分类讨论. 【解析】 (1)由体积V=,解得l=, ∴y=2πrl×3+4πr2×c =6πr×+4cπr2 =2π•, 又l≥2r,即≥2r,解得0<r≤2 ∴其定义域为(0,2]. (2)由(1)得,y′=8π(c-2)r-, =,0<r≤2 由于c>3,所以c-2>0 当r3-=0时,则r= 令=m,(m>0) 所以y′= ①当0<m<2即c>时, 当r=m时,y′=0 当r∈(0,m)时,y′<0 当r∈(m,2)时,y′>0 所以r=m是函数y的极小值点,也是最小值点. ②当m≥2即3<c≤时, 当r∈(0,2)时,y′<0,函数单调递减. 所以r=2是函数y的最小值点. 综上所述,当3<c≤时,建造费用最小时r=2; 当c>时,建造费用最小时r=
复制答案
考点分析:
相关试题推荐
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知△ABC中,角A、B、C所对的边分别为a,b,c,若A、B、C成等差数列,b=1,记角A=x,a+c=f (x).
(Ⅰ)当x∈[manfen5.com 满分网manfen5.com 满分网]时,求f (x)的取值范围;
(Ⅱ)若manfen5.com 满分网,求sin2x的值.
查看答案
如图,在三棱柱BCD-B1C1D1与四棱锥A-BB1D1D的组合体中,已知BB1⊥平面BCD,四边形ABCD是平行四边形,∠ABC=120°,AB=manfen5.com 满分网,AD=3,BB1=1.
(1)设O是线段BD的中点,求证:C1O∥平面AB1D1
(2)求直线AB1与平面ADD1所成的角.

manfen5.com 满分网 查看答案
随着生活水平的提高,儿童的身高越来越成为人们关注的话题,某心理研究机构从边区某小学四年级学生中随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).
(1)现先用分层抽样的方法从各组中共选取20人作为样本,然后再从第四组或第五组选出的人中选出两人进行进一步分析,则这两人来自不同组的概率是多少?
(2)若将身高超过130cm称为正常,低于130cm称为偏低,抽出的20名学生按性别与身高统计具体分布情况如下:
正常25
偏低103
用假设检验的方法分析:有多大的把握认为该年级学生的身高是否正常与性别有关?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.072.713.845.026.647.8810.83
参考公式及数据K2=manfen5.com 满分网

manfen5.com 满分网 查看答案
f是点集A到点集B的一个映射,且对任意(x,y)∈A,有f(x,y)=(y-x,y+x).现对集A中的点manfen5.com 满分网,均有Pn+1(an+1,bn+1)=f(an,bn).点P1为(0,2),则|P1P2|=    ,|P2011P2012|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.