满分5 > 高中数学试题 >

设函数f(x)=x2+bln(x+1),其中b≠0. (1)若b=-12,求f(...

设函数f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)在[1,3]的最小值;
(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围;
(3)是否存在最小的正整数N,使得当n≥N时,不等式manfen5.com 满分网恒成立.
(1)当b=-12时,由得x=2,可判断出当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增,故f(x)在[1,3]的最小值在x=2时取得. (2)要使f(x)在定义域内既有极大值又有极小值,即f(x)在定义域内与X轴有三个不同的交点,即使在(-1,+∞)有两个不等实根,即2x2+2x+b=0在(-1,+∞)有两个不等实根,可以利用一元二次函数根的分布可得,解之即可求b的范围. (3)先构造函数h(x)=x3-x2+ln(x+1),然后研究h(x)在[0,+∞)上的单调性,求出函数h(x)的最小值,从而得到ln(x+1)>x2-x3,最后令,即可证得结论. 【解析】 (1)由题意知,f(x)的定义域为(-1,+∞), b=-12时,由,得x=2(x=-3舍去), 当x∈[1,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0, 所以当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增, 所以f(x)min=f(2)=4-12ln3 (2)由题意在(-1,+∞)有两个不等实根, 即2x2+2x+b=0在(-1,+∞)有两个不等实根, 设g(x)=2x2+2x+b,则,解之得; (3)对于函数f(x)=x2-ln(x+1),令函数h(x)=x3-f(x)=x3-x2+ln(x+1) 则, ∴当x∈[0,+∞)时,h′(x)>0 所以函数h(x)在[0,+∞)上单调递增, 又h(0)=0, ∴x∈(0,+∞)时,恒有h(x)>h(0)=0 即x2<x3+ln(x+1)恒成立. 取,则有恒成立. 显然,存在最小的正整数N=1,使得当n≥N时,不等式恒成立
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,过点A(0,-b)和B(a,0)的直线与原点的距离为manfen5.com 满分网
(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
查看答案
已知数列{an}的前n项和为Snmanfen5.com 满分网,且2Sn=2Sn-1+2an-1+1(n≥2,n∈N*).数列{bn}满足manfen5.com 满分网,且3bn-bn-1=n(n≥2,n∈N*).
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)求证:数列{bn-an}为等比数列;
(Ⅲ)求数列{bn}的通项公式以及前n项和Tn
查看答案
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为manfen5.com 满分网,服用B有效的概率为manfen5.com 满分网
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
(1)求异面直线PD一AE所成角的大小;
(2)求证:EF⊥平面PBC;
(3)求二面角F-PC-B的大小.
查看答案
在△ABC中,a、b、c为角A、B、C所对的三边,已知a2-(b-c)2=bc.
(1)求角A;
(2)若BC=2manfen5.com 满分网,内角B等于x,周长为y,求y=f(x)的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.