满分5 > 高中数学试题 >

已知函数f(x)=sin2x-cos2x-,x∈R. (1)求函数f(x)的最小...

已知函数f(x)=manfen5.com 满分网sin2x-cos2x-manfen5.com 满分网,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=manfen5.com 满分网,f(C)=0,若sinB=2sinA,求a,b的值.
(1)将f(x)解析式第二项利用二倍角的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由正弦函数的值域得出f(x)的最小值,找出ω的值,代入周期公式,即可求出f(x)的最小正周期; (2)由(1)确定的f(x)解析式及f(C)=0,求出sin(2C-)=1,由C的范围,求出2x-的范围,利用特殊角的三角函数值及正弦函数的图象求出C的度数,由sinB=2sinA,利用正弦定理得到b=2a①,再利用余弦定理得到c2=a2+b2-2abcosC,将c与cosC的值代入得到关于a与b的方程,记作②,联立①②即可求出a与b的值. 【解析】 (1)f(x)=sin2x-cos2x- =sin2x-- =sin2x-cos2x-1=sin(2x-)-1, ∵-1≤sin(2x-)-≤1, ∴f(x)的最小值为-2, 又ω=2, 则最小正周期是T==π; (2)由f(C)=sin(2C-)-1=0,得到sin(2C-)=1, ∵0<C<π,∴-<2C-<, ∴2C-=,即C=, ∵sinB=2sinA,∴由正弦定理得b=2a①,又c=, ∴由余弦定理,得c2=a2+b2-2abcos,即a2+b2-ab=3②, 联立①②解得:a=1,b=2.
复制答案
考点分析:
相关试题推荐
如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,
AB=2,AP=2.
(1)求三棱锥P-BCD的体积;
(2)求异面直线EF与PD所成角的大小.

manfen5.com 满分网 查看答案
已知变量x,y满足约束条件manfen5.com 满分网,若目标函数z=y-ax仅在点(-3,0)处取到最大值,则实数a的取值范围为( )
A.(3,5)
B.(-1,2)
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知复数ω满足ω=2-i(i为虚数单位),复数z=manfen5.com 满分网+|ω-2|,则一个以z为根的实系数一元二次方程是( )
A.x2+6x+10=0
B.x2-6x+10=0
C.x2+6x-10=0
D.x2-6x-10=0
查看答案
“m<1”是“函数f(x)=x2+2x+m有零点”的( )
A.充要条件
B.必要非充分条件
C.充分非必要条件
D.既不充分也不必要条件
查看答案
已知函数f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,则f(x)是( )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为manfen5.com 满分网的奇函数
D.最小正周期为manfen5.com 满分网的偶函数
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.