满分5 > 高中数学试题 >

设函数. (1)已知f(x)在点P(1,f(1))处的切线方程是y=2x-1,求...

设函数manfen5.com 满分网
(1)已知f(x)在点P(1,f(1))处的切线方程是y=2x-1,求实数a,b的值.
(2)若方程f(x)=λx2(λ>0)有唯一实数解,求实数λ的值.
(1)求导函数,利用(x)在点P(1,f(1))处的切线方程是y=2x-1,建立方程组,从而可求实数a,b的值; (2)因为方程f(x)=λx2有唯一实数解,所以λx2-lnx-x=0有唯一实数解,构造函数g(x)=λx2-lnx-x,利用g(x)=0有唯一解,再构造函数h(x)=2lnx+x-1,利用h(1)=0,可得方程的解,从而可求实数λ的值. 【解析】 (1)当x=1时,y=1,∴. ∵,即f′(1)=1-a-b=2, ∴a=0,b=-1.…(4分) (2)因为方程f(x)=λx2有唯一实数解,所以λx2-lnx-x=0有唯一实数解.…(6分) 设g(x)=λx2-lnx-x,则. 令g'(x)=0,则2λx2-x-1=0. 因为λ>0,所以△=1+8λ>0,方程有两异号根,设为x1<0,x2>0,因为x>0,所以x1应舍去. 当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减; 当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增. 当x=x2时,g'(x2)=0,g(x)取最小值g(x2).…(8分) 因为g(x)=0有唯一解,所以g(x2)=0. 则即…(10分) 因为λ>0,所以2lnx2+x2-1=0.(*) 设函数h(x)=2lnx+x-1.因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解. 因为h(1)=0,所以方程(*)的解为x2=1. 代入方程组解得λ=1.…(12分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆上的点到右焦点F的最近距离为2,若椭圆C与x轴交于A、B两点,M是椭圆C上异于A、B的任意一点,直线MA交直线l:x=9于G点,直线MB交直线l于H点.
(1)求椭圆C的方程;
(2)试探求manfen5.com 满分网是否为定值?若是,求出此定值,若不是说明理由.
查看答案
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=manfen5.com 满分网
(I)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求三棱锥C-PAB的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
已知数列{an}的首项a1=1,且满足manfen5.com 满分网
(I)设manfen5.com 满分网,求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(II)设manfen5.com 满分网,求数列{cn}的前n项和Sn
查看答案
已知△ABC的∠A,∠B,∠C对边分别为a,b,c,ab=4且manfen5.com 满分网的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.