满分5 > 高中数学试题 >

已知m>1,直线l:x-my-=0,椭圆C:+y2=1,F1、F2分别为椭圆C的...

已知m>1,直线l:x-my-manfen5.com 满分网=0,椭圆C:manfen5.com 满分网+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
(1)把F2代入直线方程求得m,则直线的方程可得. (2)设A(x1,y1),B(x2,y2).直线与椭圆方程联立消去x,根据判别式大于0求得m的范围,且根据韦达定理表示出y1+y2和y1y2,根据,=2,可知G(,),h(,),表示出|GH|2,设M是GH的中点,则可表示出M的坐标,进而根据2|MO|<|GH|整理可得x1x2+y1y2<0把x1x2和y1y2的表达式代入求得m的范围,最后综合可得答案. 【解析】 (Ⅰ)【解析】 因为直线l:x-my-=0,经过F2(,0), 所以=,得m2=2, 又因为m>1,所以m=, 故直线l的方程为x-y-1=0. (Ⅱ)【解析】 设A(x1,y1),B(x2,y2). 由,消去x得 2y2+my+-1=0 则由△=m2-8(-1)=-m2+8>0,知m2<8, 且有y1+y2=-,y1y2=-. 由于F1(-c,0),F2(c,0),故O为F1F2的中点, 由,=2,可知G(,),H(,) |GH|2=+ 设M是GH的中点,则M(,), 由题意可知2|MO|<|GH| 即4[()2+()2]<+即x1x2+y1y2<0 而x1x2+y1y2=(my1+)(my2+)+y1y2=(m2+1)() 所以()<0,即m2<4 又因为m>1且△>0 所以1<m<2. 所以m的取值范围是(1,2).
复制答案
考点分析:
相关试题推荐
投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标
(1)求点P落在区域C:x2+y2≤10内的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.
查看答案
如图,已知在侧棱垂直于底面三棱柱ABC-A1B1C1中,manfen5.com 满分网,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求三棱锥 A1-B1CD的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网,函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期T;
(Ⅱ)将函数f(x)的图象向左平移manfen5.com 满分网上个单位后,再将所得图象上所有点的横坐标伸长为原来的3倍,得到函数g(x)的图象,求函数g(x)的解析式及其对称中心坐标.
查看答案
知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设bn=manfen5.com 满分网+2n,求数列{bn}的前n项和Tn
查看答案
三角形ABC中,a,b,c分别是角A,B,C所对的三边,能得出三角形ABC一定是锐角三角形的条件是    (只写序号)
manfen5.com 满分网   ②manfen5.com 满分网   ③manfen5.com 满分网   ④tanA+tanB+tanC>0. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.