满分5 > 高中数学试题 >

定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件: ①f(x)...

定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; ②f′(x)是偶函数;③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.
(Ⅰ)求出f′(x)=3ax2+2bx+c,由f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,得到f′(1)=3a+2b+c=0,再由函数的奇偶性和切线方程能够求出函数y=f(x)的解析式. (Ⅱ)若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1,由此入手,结合题设条件,能够求出实数m的取值范围. 【解析】 (Ⅰ)f′(x)=3ax2+2bx+c ∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数, ∴f′(1)=3a+2b+c=0…①…(1分) 由f′(x)是偶函数得:b=0②…(2分) 又f(x)在x=0处的切线与直线y=x+2垂直,f′(0)=c=-1③…(3分) 由①②③得:, 即…(4分) (Ⅱ)由已知得: 若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1 设h(x)=4lnx-x2+1 m>hmin,对h(x)求导,导数在(0,)大于零,(,e)小于零,即h(x)先递增再递减, 当x=.m取最大值+∞,x=e 时,m取最小值5-e2. ∴实数m的取值范围是(5-e2,+∞).
复制答案
考点分析:
相关试题推荐
如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥面ACE.
(1)求证:AE⊥BC;
(2)若点N为线段AB的中点,求证:MN∥面ADE;
(3)若 BE=4,CE=manfen5.com 满分网,且二面角A-BC-E的大小为45°,求三棱锥C-ABE的体积.

manfen5.com 满分网 查看答案
一笼子中装有2只白猫,3只黑猫,笼门打开每次出来一只猫,每次每只猫都有可能出来.
(1)第三次出来的是只白猫的概率;
(2)记白猫出来完时笼中所剩黑猫数ξ,试求ξ的概率分布列及期望.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,c cosA成等差数列.
(I)求角B的大小;
(Ⅱ)若b=manfen5.com 满分网,试求△ABC面积S的最大值.
查看答案
设函数f(x)=asin2x+bcos2x,其中a,b∈R.ab≠0,若f(x)≤|f(manfen5.com 满分网)|对一切x∈R恒成立,则
①f(manfen5.com 满分网)=0;  ②|f(manfen5.com 满分网)|<|f(manfen5.com 满分网)|;
③函数y=f(x)既不是奇函数也不是偶函数;
④函数y=f(x)的单调递增区间是:[kπ+manfen5.com 满分网,kπ+manfen5.com 满分网](k∈Z);
⑤经过点(a,b)的所有直线均与函数y=f(x)的图象相交.
以上结论正确的是    (写出所有正确结论的编号). 查看答案
已知过定点P(-1,0)的直线l:manfen5.com 满分网(其中t为参数)与圆:x2+y2-2x-4y+4=0交于M,N两点,则PM.PN=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.