满分5 > 高中数学试题 >

某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参...

某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如下表所示:
版本人教A版人教B版苏教版北师大版
人数2015105
(I)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北大师大版的概率;
(II )设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求抽到男教师个数的分布列和期望.
(Ⅰ)只考虑首位发言教师的情况:共有50种,符合题意的有5种,由此能求出第一位发言的教师所使用版本是北大师大版的概率. (Ⅱ)设抽到男教师个数ξ,则ξ可取0、1、2,分别求出P(ξ=0),P(ξ=1),P(ξ=2)的值,由此能求出抽到男教师个数的分布列和期望. 【解析】 (Ⅰ)只考虑首位发言教师的情况:共有50种,符合题意的有5种, ∴所求的概率为. (Ⅱ)设抽到男教师个数ξ,则ξ可取0、1、2, P(ξ=0)==, P(ξ=1)==, P(ξ=2)==, ∴抽到男教师个数ξ的分布列: ξ   0  1  2  P       Eξ=0×+1×+2×=.
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别是角A、B、C的对边,manfen5.com 满分网=(b,2a-c),manfen5.com 满分网=(cosB,cosC),且manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)设f(x)=cos(ωx-manfen5.com 满分网)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-manfen5.com 满分网,f(-manfen5.com 满分网))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2-manfen5.com 满分网,则,g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+…+g(manfen5.com 满分网)=-105.5.
其中正确命题的序号为    (把所有正确命题的序号都填上). 查看答案
在三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则三棱锥A-BCD的外接球的体积为    查看答案
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被C截得弦长为manfen5.com 满分网时,则a=    查看答案
manfen5.com 满分网的展开式中的常数项为manfen5.com 满分网,则实数a    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.