满分5 > 高中数学试题 >

在△ABC中,a,b,c分别是角A、B、C的对边,=(b,2a-c),=(cos...

在△ABC中,a,b,c分别是角A、B、C的对边,manfen5.com 满分网=(b,2a-c),manfen5.com 满分网=(cosB,cosC),且manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)设f(x)=cos(ωx-manfen5.com 满分网)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值.
(1)要求B角的大小,要先确定B的一个三角函数值,再确定B的取值范围 (2)要求三角函数的最值,要先将其转化为正弦型函数的形式,再根据正弦型函数的性质解答. 【解析】 (1)由m∥n,得bcosC=(2a-c)cosB, ∴bcosC+ccosB=2acosB. 由正弦定理,得sinBcosC+sinCcosB=2sinAcosB, ∴sin(B+C)=2sinAcosB. 又B+C=π-A, ∴sinA=2sinAcosB. 又sinA≠0,∴. 又B∈(0,π),∴. (2) 由已知,∴ω=2. 当 因此,当时,; 当,
复制答案
考点分析:
相关试题推荐
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-manfen5.com 满分网,f(-manfen5.com 满分网))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2-manfen5.com 满分网,则,g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+…+g(manfen5.com 满分网)=-105.5.
其中正确命题的序号为    (把所有正确命题的序号都填上). 查看答案
在三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则三棱锥A-BCD的外接球的体积为    查看答案
双曲线manfen5.com 满分网-manfen5.com 满分网=1的渐近线方程为y=±2x,则n=    查看答案
manfen5.com 满分网的二项展开式中,x的系数与x9的系数之差为    查看答案
某地为上海“世博会”招募了20名志愿者,他们的编号分别是1号、2号、…、19号、20号.若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组.那么确保5号与14号入选并被分配到同一组的选取种数是( )
A.16
B.21
C.24
D.90
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.