满分5 > 高中数学试题 >

某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、1...

某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.

manfen5.com 满分网
(1)根据分层抽样可得,故可求n的值; (2)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率; (3)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率. 【解析】 (1)由题意可得,∴n=160; (2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种, ∴a和b至少有一人上台抽奖的概率为=; (3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内, 由条件得到的区域为图中的阴影部分 由2x-y-1=0,令y=0可得x=,令y=1可得x=1 ∴在x,y∈[0,1]时满足2x-y-1≤0的区域的面积为= ∴该代表中奖的概率为=.
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和Sn,已知a1=1,等式an+an+2=2an+1对任意n∈N*均成立.
(1)若a4=10,求数列{an}的通项公式;
(2)若a2=1+t,且存在m≥3(m∈N*),使得am=Sm成立,求t的最小值.
查看答案
如图,椭圆manfen5.com 满分网的上顶点B,M、N是椭圆C上异于点B的两个动点.
(1)若M为椭圆C的下顶点,N为椭圆C的右顶点,求△BMN外接圆的方程;
(2)若动点M、N关于原点中心对称,试求直线BM与BN的斜率之积.

manfen5.com 满分网 查看答案
如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.
(1)现给出三个条件:①manfen5.com 满分网;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;
(2)在(1)的条件下,求三棱锥P-ABC的体积.

manfen5.com 满分网 查看答案
某同学用“五点法”画函数manfen5.com 满分网在某一个周期内的图象时,列表并填入的部分数据如下表:
x______manfen5.com 满分网______manfen5.com 满分网______
ωx+φmanfen5.com 满分网πmanfen5.com 满分网
Asin(ωx+φ)2-2
(1)请将上表数据补全,并直接写出函数f(x)的解析式;
(2)当manfen5.com 满分网时,求函数f(x)的值域.
查看答案
设集合W是满足下列两个条件的无穷数列{an}的集合:①manfen5.com 满分网;②an≤M,其中n∈N*,M是与n无关的常数.现给出下列的四个无穷数列:(1)manfen5.com 满分网;(2)manfen5.com 满分网;(3)an=2n;(4)manfen5.com 满分网,写出上述所有属于集合W的序号    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.