满分5 > 高中数学试题 >

已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). ...

已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.
(1)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值; (2)将曲线y=g(x)在点x=x处的切线与y轴垂直转化成方程g'(x)=0有实数解,只需研究导函数的最小值即可. 【解析】 (1)∵, ∴ 令f'(x)=0,得x=a. ①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值. ②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减, 当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增, 所以当x=a时,函数f(x)取得最小值lna ③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减, 所以当x=e时,函数f(x)取得最小值. .综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值; 当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna; 当a≥e时,函数f(x)在区间(0,e]上的最小值为. (2)∵g(x)=(lnx-1)ex+x,x∈(0,e], ∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=. 由(1)可知,当a=1时,. 此时f(x)在区间(0,e]上的最小值为ln1=0,即.(10分) 当x∈(0,e],,, ∴. 曲线y=g(x)在点x=x处的切线与y轴垂直等价于方程g'(x)=0有实数解.(13分) 而g'(x)>0,即方程g'(x)=0无实数解.、故不存在x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直.
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且manfen5.com 满分网,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).
(I)求椭圆C的方程;
(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.

manfen5.com 满分网 查看答案
当前人们普遍认为拓展训练是一种挑战极限、完善人格的训练,某大学生拓展训练中心着眼于大学生的实际情况,精心地设计了三个相互独立的挑战极限项目,并设置了如下计分办法:
项目
挑战成功得分103060
挑战失败得分
据调查,大学生挑战甲项目的成功概率为manfen5.com 满分网,挑战乙项目的成功概率为manfen5.com 满分网,挑战丙项目的成功概率为manfen5.com 满分网
(1)求某同学三个项目至少一项挑战成功的概率;
(2)记该同学挑战三个项目后所得分数为X,求X的分布列并预测该同学所得分数的数学期望.
查看答案
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,AB=1,PA=2.
(I)证明:直线CE∥平面PAB;
(Ⅱ)求直线CE与平面PAC所成角的余弦值.

manfen5.com 满分网 查看答案
已知等比数列{an}是递增数列,manfen5.com 满分网
(I)求数列{bn}的通项公式;
(Ⅱ)求数列{nbn}的前n项和Sn
查看答案
给出以下四个命题:
①已知命题p:∃x∈R,tanx=2;命题q:∀x∈R,x2-x+1≥0,则命题p∧q是真命题;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是x+y-1=0;
③函数f(x)=2x+2x-3在定义域内有且只有一个零点;
④若直线xsin α+ycos α+l=0和直线manfen5.com 满分网垂直,则角manfen5.com 满分网
其中正确命题的序号为    .(把你认为正确的命题序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.