满分5 > 高中数学试题 >

已知ABCD为圆内接四边形,AB⊥AD,延长BC、AD相交于点E,过三点D、C、...

已知ABCD为圆内接四边形,AB⊥AD,延长BC、AD相交于点E,过三点D、C、E的圆与BD的延长线交于点F.
求证:EC•EB-DB•DF=DE2

manfen5.com 满分网
根据内接四边形的性质可得到∠BCD=90°,已知CDEF为圆内接四边形,所以∠BCD=∠DFE,从而即可根据有两组角对应相等的两个三角形相似得到△DEF∽△DAB,根据相似三角形的边对应成比例,最后两个比例式相减即可得到结论. 证明:因为ABCD为圆内接四边形,AB⊥AD,根据圆内接四边形对角互补,得∠BCD=90°, 由题意得,CDEF为圆内接四边形,所以∠BCD=∠DFE, 所以∠BAD=∠DFE, 所以△DEF∽△DAB, ∴,∴DB•DF=DA•DE, 又EC•EB=ED•EA, ∴EC•EB-DB•DF=ED•EA-DA•DE=DE•(EA-DA)=DE2.
复制答案
考点分析:
相关试题推荐
已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.
查看答案
设椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且manfen5.com 满分网,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).
(I)求椭圆C的方程;
(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.

manfen5.com 满分网 查看答案
当前人们普遍认为拓展训练是一种挑战极限、完善人格的训练,某大学生拓展训练中心着眼于大学生的实际情况,精心地设计了三个相互独立的挑战极限项目,并设置了如下计分办法:
项目
挑战成功得分103060
挑战失败得分
据调查,大学生挑战甲项目的成功概率为manfen5.com 满分网,挑战乙项目的成功概率为manfen5.com 满分网,挑战丙项目的成功概率为manfen5.com 满分网
(1)求某同学三个项目至少一项挑战成功的概率;
(2)记该同学挑战三个项目后所得分数为X,求X的分布列并预测该同学所得分数的数学期望.
查看答案
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,AB=1,PA=2.
(I)证明:直线CE∥平面PAB;
(Ⅱ)求直线CE与平面PAC所成角的余弦值.

manfen5.com 满分网 查看答案
已知等比数列{an}是递增数列,manfen5.com 满分网
(I)求数列{bn}的通项公式;
(Ⅱ)求数列{nbn}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.