满分5 > 高中数学试题 >

已知函数f(x)=ln(ex+a)(a为常数)求实数集R上的奇函数,函数g(x)...

已知函数f(x)=ln(ex+a)(a为常数)求实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]及λ所在的取值范围上恒成立,求t的取值范围;
(3)讨论关于x的方程manfen5.com 满分网的根的个数.
(1)因为定义域是实数集R,直接利用奇函数定义域内有0,则f(-0)=-f(0)即f(0)=0,即可求a的值; (2)先利用函数g(x)的导函数g'(x)=λ+cosx≤0在[-1,1]上恒成立,求出λ的取值范围以及得到g(x)的最大值g(-1)=-1-sin1;然后把g(x)≤t2+λt+1在x∈[-1,1]上恒成立转化为-λ-sin1≤t2+λt+1(λ≤-1),整理得(t+1)λ+t2+sin1+1≥0(λ≤-1)恒成立,再利用一次函数的思想方法求解即可. (3)先把方程转化为=x2-2ex+m,令F(x)=(x>0),G(x)=x2-2ex+m  (x>0),再利用导函数分别求出两个函数的单调区间,进而得到两个函数的最值,比较其最值即可得出结论. 【解析】 (1)因为函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数, 所以f(-0)=-f(0)即f(0)=0, 则ln(e+a)=0解得a=0, a=0时,f(x)=x是实数集R上的奇函数; (2)由(1)得f(x)=x所以g(x)=λx+sinx,g'(x)=λ+cosx, 因为g(x) 在[-1,1]上单调递减,∴g'(x)=λ+cosx≤0  在[-1,1]上恒成立, ∴λ≤-1,g(x)max=g(-1)=-1-sin1, 只需-λ-sin1≤t2+λt+1(λ≤-1), ∴(t+1)λ+t2+sin1+1≥0(λ≤-1)恒成立, 令h(λ)=(t+1)+t2+sin1+1(λ≤-1) 则 ,解得t≤-1 (3)由(1)得f(x)=x ∴方程转化为=x2-2ex+m,令F(x)=(x>0),G(x)=x2-2ex+m  (x>0),(8分) ∵F'(x)=,令F'(x)=0,即=0,得x=e 当x∈(0,e)时,F'(x)>0,∴F(x)在(0,e)上为增函数; 当x∈(e,+∞)时,F'(x)<0,F(x)在(e,+∞)上为减函数;(9分) 当x=e时,F(x)max=F(e)=(10分) 而G(x)=(x-e)2+m-e2   (x>0) ∴G(x)在(0,e)上为减函数,在(e,+∞)上为增函数;(11分) 当x=e时,G(x)min=m-e2(12分) ∴当m-e2>,即m>e2+时,方程无解; 当m-e2=,即m=e2+时,方程有一个根; 当m-e2<,即m<e2+时,方程有两个根;(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:manfen5.com 满分网(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点manfen5.com 满分网manfen5.com 满分网,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求manfen5.com 满分网的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

manfen5.com 满分网 查看答案
某民营企业从事M国某品牌运动鞋的加工业务,按照国际惯例以美元结算.依据以往的加工生产数据统计分析,若加工订单的金额为x万美元,可获得的加工费的近似值为manfen5.com 满分网万美元.2011年以来,受美联储货币政策的影响,美元持续贬值.由于从生产订单签约到成品交付要经历一段时间,收益将因美元贬值而损失mx美元(其中m是该时段的美元贬值指数,且0<m<1),从而实际所得的加工费为manfen5.com 满分网万美元.
(1)若某时段的美元贬值指数manfen5.com 满分网,为了确保企业实际所得加工费随x的增加而增加,该企业加工产品订单的金额x应该控制在什么范围内?
(2)若该企业加工产品订单的金额为x万美元时共需要的生产成本为manfen5.com 满分网万美元.已知该企业的生产能力为x∈[10,20],试问美元贬值指数m在何范围内时,该企业加工生产不会出现亏损?(已知manfen5.com 满分网).
查看答案
己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=manfen5.com 满分网
(I )求角C大小;
(II)当c=1时,求a2+b2的取值范围.
查看答案
在矩形ABCD中,已知AD=2AB=2,点E是AD得中点,将△DEC沿CE折起到△D′EC的位置,使平面D′EC⊥平面BEC.
(1)证明:BE⊥CD′;
(2)求点E到平面D′EC的距离.

manfen5.com 满分网 查看答案
在直角坐标系xOy中,设A点是曲线C1:y=ax3+1(a>0)与曲线manfen5.com 满分网的一个公共点,若C1与C2在A点处的切线互相垂直,则实数a的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.