满分5 > 高中数学试题 >

如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2...

如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1∥面BDC1
(Ⅱ)求二面角C1-BD-C的余弦值;
(Ⅲ)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.

manfen5.com 满分网
(I)连接B1C,与BC1相交于O,连接OD,我们由三角形的中位线定理,易得OD∥AB1,进而由线面平行的判定定理得到AB1∥面BDC1; (Ⅱ)建立如图所示的空间直角坐标系,分别求出平面C1BD和平面BDC的法向量,代入向量夹角公式,即可得到二面角C1-BD-C的余弦值; (Ⅲ)假设侧棱AA1上存在点P,使得CP⊥面BDC1,我们可以设出P点坐标,进而构造方程组,若方程组有解说明存在,若方程组无解,说明满足条件的P点不存在. 证明:(I)连接B1C,与BC1相交于O,连接OD ∵BCC1B1是矩形, ∴O是B1C的中点. 又D是AC的中点, ∴OD∥AB1.(2分) ∵AB1⊄面BDC1,OD⊂面BDC1, ∴AB1∥面BDC1.(4分) 【解析】 (II)如图,建立空间直角坐标系,则 C1(0,0,0),B(0,3,2),C(0,3,0),A(2,3,0), D(1,3,0)(5分) 设=(x,y,z)是面BDC1的一个法向量,则 即,令x=1 则=(1,,).(6分) 易知=(0,3,0)是面ABC的一个法向量. ∴cos<,>=.(8分) ∴二面角C1-BD-C的余弦值为.(9分) (III)假设侧棱AA1上存在一点P(2,y,0)(0≤y≤3),使得CP⊥面BDC1. 则,即 ∴方程组无解.∴假设不成立. ∴侧棱AA1上不存在点P,使CP⊥面BDC1.(14分)
复制答案
考点分析:
相关试题推荐
甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为manfen5.com 满分网,乙每次投中的概率为manfen5.com 满分网,每人分别进行三次投篮.
(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望Eξ;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投进2次的概率.
查看答案
在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
集合U={(x,y)|x∈R,y∈R},M={(x,y)||x|+|y|<a},P={(x,y)|y=f(x)},现给出下列函数:①y=ax,②manfen5.com 满分网,③y=sin(x+a),④y=cosax,若0<a<1时,恒有P∩CUM=P,则所有满足条件的函数f(x)的编号是    查看答案
manfen5.com 满分网如图,圆O:x2+y22内的正弦曲线y=sinx与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是    查看答案
设函数manfen5.com 满分网的最小值为-1,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.