满分5 > 高中数学试题 >

已知椭圆右顶点与右焦点的距离为,短轴长为. (I)求椭圆的方程; (Ⅱ)过左焦点...

已知椭圆manfen5.com 满分网右顶点与右焦点的距离为manfen5.com 满分网,短轴长为manfen5.com 满分网
(I)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为manfen5.com 满分网,求直线AB的方程.
(Ⅰ)根据椭圆右顶点与右焦点的距离为,短轴长为,可得,由此,即可求得椭圆方程; (Ⅱ)当直线AB与x轴垂直时,,此时不符合题意;当直线AB与x轴不垂直时,设直线 AB的方程为:y=k(x+1),代入消去y得,进而可求三角形的面积,利用,即可求出直线AB的方程. 【解析】 (Ⅰ)由题意,,解得. 即椭圆方程为 (Ⅱ)当直线AB与x轴垂直时,,此时不符合题意,故舍掉; 当直线AB与x轴不垂直时,设直线 AB的方程为:y=k(x+1),代入消去y得:(2+3k2)x2+6k2x+(3k2-6)=0. 设A(x1,y1),B(x2,y2),则,所以 . 原点到直线的AB距离, 所以三角形的面积. 由可得k2=2,∴, 所以直线或.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+2alnx.
(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数manfen5.com 满分网在[1,2]上是减函数,求实数a的取值范围.
查看答案
如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1∥面BDC1
(Ⅱ)求二面角C1-BD-C的余弦值;
(Ⅲ)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.

manfen5.com 满分网 查看答案
甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为manfen5.com 满分网,乙每次投中的概率为manfen5.com 满分网,每人分别进行三次投篮.
(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望Eξ;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投进2次的概率.
查看答案
在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
集合U={(x,y)|x∈R,y∈R},M={(x,y)||x|+|y|<a},P={(x,y)|y=f(x)},现给出下列函数:①y=ax,②manfen5.com 满分网,③y=sin(x+a),④y=cosax,若0<a<1时,恒有P∩CUM=P,则所有满足条件的函数f(x)的编号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.