满分5 > 高中数学试题 >

如图,椭圆经过点(0,1),离心率. (l)求椭圆C的方程; (2)设直线x=m...

manfen5.com 满分网如图,椭圆manfen5.com 满分网经过点(0,1),离心率manfen5.com 满分网
(l)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于A,B两点,点A关于x轴的对称点为A′(A′与B不重合),则直线A′B与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(1)把点(0,1)代入椭圆方程求得a和b的关系,利用离心率求得a和c的关系,进而联立方程求得a和b,则椭圆的方程可得 (2)把直线方程与椭圆方程联立消去y,设出A,B的坐标,则A′的坐标可推断出,利用韦达定理表示出y1+y2和y1y2,进而可表示出A′B的直线方程,把y=0代入求得x的表达式,把x1=my1+1,x2=my2+1代入求得x=4,进而可推断出直线A′B与x轴交于定点(4,0). 【解析】 (1)依题意可得,解得a=2,b=1. 所以,椭圆C的方程是; (2)由 得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0, 设A(x1,y1),B(x2,y2) 则A′(x1,-y1). 且. 经过点A′(x1,-y1), B(x2,y2)的直线方程为. 令y=0,则 又∵x1=my1+1,x2=my2+1.∴当y=0时, 这说明,直线A′B与x轴交于定点(4,0).
复制答案
考点分析:
相关试题推荐
为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为manfen5.com 满分网
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
查看答案
已知直三棱柱ABC-A1B1C1中,AC⊥CB,D为AB中点,A1A=AC=manfen5.com 满分网,CB=1.
(1)求证:BC1∥平面A1CD;
(2)求三棱锥C1-A1DC的体积.

manfen5.com 满分网 查看答案
等差数列{an}的各项均为正数,其前n项和为Sn,满足2S2=a2(a2+1),且a1=1.
(1)求数列{an}的通项公式;
(2)设bn=manfen5.com 满分网,求数列{bn}的最小值项.
查看答案
已知函数f(x)=lgx和g(x)=10x的图象与圆x2+y2=20在第一象限内的部分相交于M(x1,y1)和N(x2,y2)两个点,则manfen5.com 满分网=    查看答案
manfen5.com 满分网如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.测得∠BCD=15°,∠BDC=30°,CD=30米,并在点C测得塔顶A的仰角为60°,则塔高AB=    米. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.