满分5 > 高中数学试题 >

若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f...

若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x) 是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:
①f(x)=0 是常数函数中唯一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x2是一个“λ-伴随函数”; 
④“manfen5.com 满分网-伴随函数”至少有一个零点.
其中不正确的序号是    (填上所有不正确的结论序号).
①设f(x)=C是一个“λ-伴随函数”,则(1+λ)C=0,当λ=-1时,可以取遍实数集,因此f(x)=0不是唯一一个常值“λ-伴随函数”; ②根据f(x)=x,可得f(x+λ)+λf(x)=x+λ+λx,故不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立; ③用反证法,假设f(x)=x2是一个“λ-伴随函数”,则(x+λ)2+λx2=0,从而有λ+1=2λ=λ2=0,此式无解; ④令x=0,可得f()=-f(0),若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f()•f(0)=-(f(0))2<0,由此可得结论. 【解析】 ①设f(x)=C是一个“λ-伴随函数”,则(1+λ)C=0,当λ=-1时,可以取遍实数集,因此f(x)=0不是唯一一个常值“λ-伴随函数”,故①不正确; ②∵f(x)=x,∴f(x+λ)+λf(x)=x+λ+λx,当λ=-1时,f(x+λ)+λf(x)=-1≠0;λ≠-1时,f(x+λ)+λf(x)=0有唯一解,∴不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,∴(x)=x不是“λ-伴随函数”,故②正确; ③用反证法,假设f(x)=x2是一个“λ-伴随函数”,则(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ-伴随函数”,故③不正确; ④令x=0,得f()+f(0)=0,所以f()=-f(0) 若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f()•f(0)=-(f(0))2<0. 又因为f(x)的函数图象是连续不断,所以f(x)在(0,)上必有实数根.因此任意的“-伴随函数”必有根,即任意“-伴随函数”至少有一个零点,故④正确 故答案为:①③
复制答案
考点分析:
相关试题推荐
若变量x,y满足约束条件manfen5.com 满分网表示平面区域M,则当-4≤a≤2时,动直线x+y=a所经过的平面区域M的面积为    查看答案
如图,AB是⊙O的直径,CD切⊙O于点D,CA切⊙O于点A,CD交AB的延长线于点E.若AC=3,ED=2,则BE=    ;AO=   
manfen5.com 满分网 查看答案
如图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若要使输入的x值与输出的y值相等,则这样的x值有    个.
manfen5.com 满分网 查看答案
已知双曲线的方程为manfen5.com 满分网,则其渐近线的方程为    ,若抛物线y2=2px的焦点与双曲线的右焦点重合,则p=    查看答案
在△ABC中,manfen5.com 满分网那么角C=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.