满分5 > 高中数学试题 >

如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭...

如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.

manfen5.com 满分网
(1)记某个家庭得分情况为(5,3)为事件A,由几何概型公式可得,得5分与3分的概率,由相互独立事件概率的乘法公式,计算可得答案; (2)记某个家庭在游戏中获奖为事件B,分析可得获奖的得分包括(5,5),(5,3),(3,5)三种情况,由互斥事件的概率加法公式,计算可得答案; (3)由(Ⅱ)可知,每个家庭获奖的概率都是,分析可得X可取的值为0、1、2、3、4、5,由n次独立重复实验中恰有k次发生的概率公式计算可得X取0、1、2、3、4、5时的概率,列表可得X的分步列,由期望的计算公式可得X的期望. 【解析】 (Ⅰ)记某个家庭得分情况为(5,3)为事件A, 由几何概型公式可得,得5分与3分的概率均为; P(A)=×=. 所以某个家庭得分情况为(5,3)的概率为. (Ⅱ)记某个家庭在游戏中获奖为事件B,则符合获奖条件的得分包括(5,5),(5,3),(3,5),共3类情况. 所以P(B)=×+×+×=, 所以某个家庭获奖的概率为. (Ⅲ)由(Ⅱ)可知,每个家庭获奖的概率都是,而X可取的值为0、1、2、3、4、5, P(X=0)=C5()(1-)5=, P(X=1)=C51()1(1-)4=, P(X=2)=C52()2(1-)3=, P(X=3)=C53()3(1-)2=, P(X=4)=C54()4(1-)1=, P(X=5)=C55()5(1-)=, 所以X分布列为: X 1 2 3 4 5 P 所以EX=0×+1×+2×+3×+4×+5×=, 所以X的数学期望为.
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD=manfen5.com 满分网,PD⊥底面ABCD.
(1)证明:平面PBC⊥平面PBD;
(2)若二面角P-BC-D为manfen5.com 满分网,求AP与平面PBC所成角的正弦值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=manfen5.com 满分网,且f(A)恰是f(x)在[0,manfen5.com 满分网]上的最大值,求A,b和△ABC的面积.
查看答案
下列结论中正确的是   
①函数y=f(x)是定义在R上的偶函数,且f(x+1)=-f(x),则函数y=f(x)的图象关于直线x=1对称;
②已知ξ~N(16,σ2),若P(ξ>17)=0.35,则P(15<ξ<16)=0.15;
manfen5.com 满分网
④线性相关系数r的绝对值越接近于1,表明两个变量线性相关程度越弱. 查看答案
已知点C为y2=2px(p>0)的准线与x轴的交点,点F为焦点,点A、B为抛物线上两个点,若manfen5.com 满分网的夹角为    查看答案
二项式(1+sinx)n的展开式中,末尾两项的二项式系数之和为7,且二项式系数最大的一项的值为manfen5.com 满分网,则x在(0,2π)内的值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.