满分5 > 高中数学试题 >

已知函数:f(x)=lnx-ax-3(a≠0) (Ⅰ)讨论函数f(x)的单调性;...

已知函数:f(x)=lnx-ax-3(a≠0)
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对于任意的a∈[1,2],若函数manfen5.com 满分网在区间(a,3)上有最值,
求实数m的取值范围.
(Ⅰ)对f(x)求导,,分a>0,a<0两种情况写出函数的单调区间; (Ⅱ)对函数g(x)求导得g'(x)=3x2+(m+2a)x-1,根据g(x)在区间(a,3)上有最值,得到g(x)在区间(a,3)上总不是单调函数,从而得到,另由对任意a∈[1,2],g'(a)=3a2+(m+2a)•a-1=5a2+ma-1<0恒成立,分离参数即可求得实数m的取值范围. 【解析】 (Ⅰ)由已知得f(x)的定义域为(0,+∞),且,(2分) 当a>0时,f(x)的单调增区间为,减区间为; 当a<0时,f(x)的单调增区间为(0,+∞),无减区间;(6分) (Ⅱ),∴g'(x)=3x2+(m+2a)x-1, ∵g(x)在区间(a,3)上有最值, ∴g(x)在区间(a,3)上总不是单调函数, 又(9分) 由题意知:对任意a∈[1,2],g'(a)=3a2+(m+2a)•a-1=5a2+ma-1<0恒成立,∴,因为a∈[1,2],所以∴, 对任意a∈[1,2],g'(3)=3m+26+6a>0恒成立,∴∴(12分)
复制答案
考点分析:
相关试题推荐
已知数列{an}是等差数列,a1=1,a1+a2+a3+…+a10=100.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项manfen5.com 满分网,记Tn是数列{bn}的前n项之积,即Tn=b1•b2•b3…bn,试证明:Tnmanfen5.com 满分网
查看答案
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.

manfen5.com 满分网 查看答案
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD=manfen5.com 满分网,PD⊥底面ABCD.
(1)证明:平面PBC⊥平面PBD;
(2)若二面角P-BC-D为manfen5.com 满分网,求AP与平面PBC所成角的正弦值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=manfen5.com 满分网,且f(A)恰是f(x)在[0,manfen5.com 满分网]上的最大值,求A,b和△ABC的面积.
查看答案
下列结论中正确的是   
①函数y=f(x)是定义在R上的偶函数,且f(x+1)=-f(x),则函数y=f(x)的图象关于直线x=1对称;
②已知ξ~N(16,σ2),若P(ξ>17)=0.35,则P(15<ξ<16)=0.15;
manfen5.com 满分网
④线性相关系数r的绝对值越接近于1,表明两个变量线性相关程度越弱. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.