如图,曲线C
1是以原点O为中心,F
1、F
2为焦点的椭圆的一部分,曲线C
2是以原点O为顶点,F
2为焦点的抛物线的一部分,
是曲线C
1和C
2的交点.
(Ⅰ)求曲线C
1和C
2所在的椭圆和抛物线的方程;
(Ⅱ)过F
2作一条与x轴不垂直的直线,分别与曲线C
1、C
2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问
是否为定值,若是,求出定值;若不是,请说明理由.
考点分析:
相关试题推荐
已知函数:f(x)=lnx-ax-3(a≠0)
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对于任意的a∈[1,2],若函数
在区间(a,3)上有最值,
求实数m的取值范围.
查看答案
已知数列{a
n}是等差数列,a
1=1,a
1+a
2+a
3+…+a
10=100.
(1)求数列{a
n}的通项公式;
(2)设数列{b
n}的通项
,记T
n是数列{b
n}的前n项之积,即T
n=b
1•b
2•b
3…b
n,试证明:T
n>
.
查看答案
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.
查看答案
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD=
,PD⊥底面ABCD.
(1)证明:平面PBC⊥平面PBD;
(2)若二面角P-BC-D为
,求AP与平面PBC所成角的正弦值.
查看答案
已知向量
.
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=
,且f(A)恰是f(x)在[0,
]上的最大值,求A,b和△ABC的面积.
查看答案