满分5 > 高中数学试题 >

已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=...

已知椭圆的中心在原点,焦点在x轴上,离心率为manfen5.com 满分网,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线l不过点M,试问kMA+kMB是否为定值?并说明理由.
(Ⅰ)设出椭圆方程的标准形式,由离心率的值及椭圆过点(4,1)求出待定系数,得到椭圆的标准方程; (Ⅱ)把直线方程代入椭圆的方程,由判别式大于0,求出m的范围; (Ⅲ)由方程可得到两根之和、两根之积,从而可求直线MA,MB斜率之和,化简可得结论. 【解析】 (Ⅰ)∵,∴,-----------------------------------------------------(2分) 依题意设椭圆方程为: 把点(4,1)代入,得b2=5 ∴椭圆方程为---------------------------------------------------(4分) (Ⅱ)把y=x+m代入椭圆方程得:5x2+8mx+4m2-20=0, 由△>0可得64m2-20(4m2-20)>0 ∴-5<m<5---------------------------------------------------(6分) (Ⅲ)设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=,-----------------------(8分) ∴kMA+kMB=+==0, ∴kMA+kMB为定值0.------------------(12分)
复制答案
考点分析:
相关试题推荐
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD的底面是边长为2的正方形,PD⊥平面ABCD,E、F分别是PB、AD的中点,PD=2.
(1)求证:BC⊥PC;
(2)求证:EF∥平面PDC;
(3)求三棱锥B-AEF的体积.

manfen5.com 满分网 查看答案
已知△ABC中,a、b、c分别是三个内角A、B、C的对边,关于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若manfen5.com 满分网,△ABC的面积manfen5.com 满分网,求当角C取最大值时a+b的值.
查看答案
给出下列四个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f'(x)=0,则函数y=f(x)在x=x取得极值;
③m≥-1,则函数manfen5.com 满分网的值域为R;
④“a=1”是“函数manfen5.com 满分网在定义域上是奇函数”的充分不必要条件.
其中真命题是     (把你认为正确的命题序号都填在横线上) 查看答案
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2012X1+log2012X2+…+log2012X2011的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.