满分5 > 高中数学试题 >

已知椭圆C1:=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线...

已知椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且manfen5.com 满分网
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.
(I)设点M为(x1,y1),由F2是抛物线y2=4x的焦点,知F2(1,0);|MF2|=,由抛物线定义知x1+1=,即x1=;由M是C1与C2的交点,y12=4x1,由此能求出椭圆C1的方程. (II)直线BD的方程为:7x-7y+1=0,在菱形ABCD中,AC⊥BD,设直线AC的方程为x+y=m,由,得7x2-8mx+4m2-12=0.由点A、C在椭圆C1上,知(-8m)2-4×7×(4m2-12)>0,由此能导出直线AC的方程. 【解析】 (I)设点M为(x1,y1), ∵F2是抛物线y2=4x的焦点, ∴F2(1,0); 又|MF2|=,由抛物线定义知 x1+1=,即x1=; 由M是C1与C2的交点, ∴y12=4x1,即y1=±,这里取y1=; 又点M(,)在C1上, ∴+=1,且b2=a2-1, ∴9a4-37a2+4=0,∴(舍去), ∴a2=4,b2=3; ∴椭圆C1的方程为: (II)∵直线BD的方程为:7x-7y+1=0,在菱形ABCD中,AC⊥BD, 不妨设直线AC的方程为x+y=m, 则 ∴消去y,得7x2-8mx+4m2-12=0; ∵点A、C在椭圆C1上, ∴(-8m)2-4×7×(4m2-12)>0,即m2<7,∴-<m<; 设A(x1,y1),C(x2,y2), 则x1+x2=,y1+y2=(-x1+m)+(-x2+m)=-(x1+x2)+2m=-+2m=, ∴AC的中点坐标为, 由菱形ABCD知,点也在直线BD:7x-7y+1=0上, 即7×-7×+1=0,∴m=-1,由m=-1∈知: 直线AC的方程为:x+y=-1,即x+y+1=0.
复制答案
考点分析:
相关试题推荐
(Ⅰ)设函数manfen5.com 满分网,证明:当x>0时,f(x)>0.
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:manfen5.com 满分网
查看答案
已知a>0且a≠1,数列{an}中,a1=a,manfen5.com 满分网(n∈N*),令bn=an•log2an
(1)若a=2,求数列{bn}的前n项和Sn
(2)若bn+1>bn,n∈N*,求a的取值范围.
查看答案
manfen5.com 满分网如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=manfen5.com 满分网
(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的大小;
(3)求二面角O-AC-D的大小.
查看答案
已知函数f(x)=manfen5.com 满分网sinxcosx-manfen5.com 满分网cos2x-1
(1)求函数f(x)的最小值;
(2)设△ABC的内角A、B、C所对边分别为a、b、c,且c=manfen5.com 满分网,f(c)=0,sinB=3sinA,求△ABC的面积;
(3)若manfen5.com 满分网<α<manfen5.com 满分网,f(α)=-manfen5.com 满分网,求sin2α的值.
查看答案
某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(Ⅰ)完成如下的频率分布表
近20年六月份降雨量频率分布表
降雨量70110140160200220
频率manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.