满分5 > 高中数学试题 >

如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE...

如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE.
(1)求证:AE⊥BC;
(2)如果点N为线段AB的中点,求证:MN∥平面ADE.

manfen5.com 满分网
(1)根据BM⊥平面ACE,AE⊂平面ACE,根据线面垂直的性质可知BM⊥AE,而AE⊥BE,且BE∩BM=B,BE、BM⊂平面EBC,根据线面垂直的判定定理可知AE⊥平面EBC,根据BC⊂平面EBC,则AE⊥BC. (2)取DE中点H,连接MH、AH,根据BM⊥平面ACE,EC⊂平面ACE,可知BM⊥EC,因为BE=BC,则M为CE的中点.根据中位线可知MH∥,且MH=,因为四边形ABCD为平行四边形,所以DC∥AB,且DC=AB,则MH∥,且MH=,而N为AB中点,则MH∥AN,且MH=AN,从而四边形ANMH为平行四边形,则MN∥AH,因为MN⊄平面ADE,AH⊂平面ADE,根据线面平行的判定定理可知MN∥平面ADE. 证明:(1)因为BM⊥平面ACE,AE⊂平面ACE, 所以BM⊥AE.(2分) 因为AE⊥BE,且BE∩BM=B,BE、BM⊂平面EBC, 所以AE⊥平面EBC.(4分) 因为BC⊂平面EBC, 所以AE⊥BC.(6分) (2)取DE中点H,连接MH、AH. 因为BM⊥平面ACE,EC⊂平面ACE, 所以BM⊥EC. 因为BE=BC, 所以M为CE的中点.(8分) 所以MH为△EDC的中位线. 所以MH∥,且MH=.(10分) 因为四边形ABCD为平行四边形,所以DC∥AB,且DC=AB. 故MH∥,且MH=. 因为N为AB中点, 所以MH∥AN,且MH=AN. 所以四边形ANMH为平行四边形, 所以MN∥AH.(12分) 因为MN⊄平面ADE,AH⊂平面ADE, 所以MN∥平面ADE.(14分)
复制答案
考点分析:
相关试题推荐
时维壬辰,序属仲春,值春耕播种时机,某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
日    期4月10日4月11日4月12日4月13日4月14日
温  差x(℃)1012131411
发芽数y(颗)1113141612
(Ⅰ)从4月10日至4月14日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于14”的概率;
(Ⅱ)根据表中的数据可知发芽数y(颗)与温差x(℃)呈线性相关,请求出发芽数y关于温差x的线性回归方程y=bx+a.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c且acosC,bcosB,ccosA成等差数列.
(Ⅰ)求角B的大小;
(Ⅱ)若b=manfen5.com 满分网,试求△ABC周长l的范围.
查看答案
设f(x)=sin(2x+φ),若f(x)≤f(manfen5.com 满分网)对一切x∈R恒成立,则:
①f(-manfen5.com 满分网)=0;
②f(x)的图象关于点(manfen5.com 满分网,0)对称;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+manfen5.com 满分网,kπ+manfen5.com 满分网](k∈Z)
以上结论正确的是    (写出所有正确结论的编号). 查看答案
已知圆C:x2+y2=1,过点P(0,2)作圆C的切线,交x轴正半轴于点Q、若M(m,n)为线段PQ上的动点,则manfen5.com 满分网+manfen5.com 满分网的最小值为    查看答案
已知manfen5.com 满分网=2•manfen5.com 满分网manfen5.com 满分网=3•manfen5.com 满分网manfen5.com 满分网=4•manfen5.com 满分网…观察以上等式,若manfen5.com 满分网=8•manfen5.com 满分网(a,t均为正实数),则a+t=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.