满分5 > 高中数学试题 >

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,...

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且manfen5.com 满分网,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2;
(3)正数数列{cn}中,an+1=(cnn+1(n∈N*),求数列{cn}中的最大项.
(1)根据an=Sn-Sn-1,整理得an-an-1=1进而可判断出数列{an}是公差为1的等差数列,根据等差数列的通项公式求得答案. (2)把(1)中求得的an代入求得的bn通项公式,利用裂项法可证明原式. (3)由的an代通项公式可分别求得c1,c2,c3,c4,猜想n≥2时,{cn}是递减数列令,进而进行求导,根据n≥3时,f′(x)<0,判断出在[3,+∞)内,f(x)为单调递减函数,n≥2时,{lncn}是递减数列,即{cn}是递减数列,同时c1<c2,进而可知数列的最大项为c2. 【解析】 (1)由已知,对于任意n∈N*,总有2Sn=an+an2①成立 所以2Sn-1=an-1+an-12② ①-②得,2an=an+an2-an-1-an-12, ∴an+an-1=(an+an-1)(an-an-1) ∵an,an-1均为正数, ∴an-an-1=1(n≥2) ∴数列{an}是公差为1的等差数列 又n=1时,2S1=a1+a12,解得a1=1∴an=n(n∈N*) (2)证明:∵对任意实数x∈(1,e](e是常数,e=2.71828)和任意正整数n, 总有, ∴= (3)由已知,, 易得c1<c2,c2>c3>c4> 猜想n≥2时,{cn}是递减数列 令 则, ∵当x≥3时,lnx>1,则1-lnx<0,f′(x)<0, ∴在[3,+∞)内,f(x)为单调递减函数, 由an+1=(cn)n+1(n∈N*),知 ∴n≥2时,{lncn}是递减数列,即{cn}是递减数列, 又c1<c2, ∴数列{cn}中的最大项为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx,g(x)=manfen5.com 满分网ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.
查看答案
已知动点P的轨迹方程为:manfen5.com 满分网-manfen5.com 满分网=1(x>2),O是坐标原点.
①若直线x-my-3=0截动点P的轨迹所得弦长为5,求实数m的值;
②设过P的轨迹上的点P的直线与该双曲线的两渐近线分别交于点P1、P2,且点P分有向线段manfen5.com 满分网所成的比为λ(λ>0),当λ∈[manfen5.com 满分网manfen5.com 满分网]时,求|manfen5.com 满分网|•|manfen5.com 满分网|的最值.
查看答案
已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2manfen5.com 满分网,且AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成角的大小;
(2)求侧面A1ABB1与底面ABC所成二面角的大小;
(3)求顶点C到侧面A1ABB1的距离.

manfen5.com 满分网 查看答案
甲、乙两人独自破译一个密码,他们能独立译出密码的概率分别为manfen5.com 满分网manfen5.com 满分网
①求甲、乙两人都不能译出密码的概率;
②假设有3个与甲同样能力的人一起独自破译该密码(甲、乙两人均不参加),求译出该密码的人数ξ概率分布和数学期望.
查看答案
在△ABC中,角A、B、C所对边分别为a,b,c,已知manfen5.com 满分网,且最长边的边长为l,
求:
(1)角C的大小;
(2)△ABC最短边的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.