满分5 > 高中数学试题 >

已知函数f(x)=x2+ax-lnx,a∈R. (1)若函数f(x)在[1,2]...

已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:manfen5.com 满分网
(1)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围. (2)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx结合(2)中知F(x)的最小值为3,再令并求导,再由导函数在0<x≤e大于等于0可判断出函数ϕ(x)在(0,e]上单调递增,从而可求得最大值也为3,即有成立,即成立. 【解析】 (1)在[1,2]上恒成立, 令h(x)=2x2+ax-1,有得, 得 (2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,= ①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=35,(舍去), ②当时,g(x)在上单调递减,在上单调递增 ∴,a=e2,满足条件. ③当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), 综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx,由(2)知,F(x)min=3. 令,, 当0<x≤e时,ϕ'(x)≥0,φ(x)在(0,e]上单调递增 ∴ ∴,即>(x+1)lnx.
复制答案
考点分析:
相关试题推荐
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线y2=manfen5.com 满分网的焦点为F1
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
查看答案
数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+n+1(n≥1).
(1)求数列{an}的通项公式;
(2)设等差数列{bn}各项均为正数,满足b1+b2+b3=18,且a1+b1+2,a2+b2,a3+b3-3成等比数列,证明:manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网
查看答案
某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
分 组频 数频 率
[40,50 )20.04
[50,60 )30.06
[60,70 )140.28
[70,80 )150.30
[80,90 )
[90,100]40.08
合 计
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为[90,100]中任选出两位同学,共同帮助成绩在[40,50)中的某一个同学,试列出所有基本事件;若A1同学成绩为43分,B1同学成绩为95分,求A1、B1两同学恰好被安排在“二帮一”中同一小组的概率.
查看答案
已知函数f(x)=manfen5.com 满分网sin2x-cos2x-manfen5.com 满分网,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=manfen5.com 满分网,f(C)=0,若sinB=2sinA,求a,b的值.
查看答案
如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,
AB=2,AP=2.
(1)求三棱锥P-BCD的体积;
(2)求异面直线EF与PD所成角的大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.