(1)an=1+(n-1)d,,由b1b3=b4,得q==b1=2,由此能求出数列{an}和数列{bn}的通项公式.
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2•b2)+…+a2n-1+(a2n+nbn)=1+S2n+(b1+2b2+…+nbn),令A=b1+2b2+…+nbn,利用错位相减法能求出数列{cn}的前2n+1项和T2n+1.
【解析】
(1)设数列{an}的公差为d,数列{bn}的公比为q,
则an=1+(n-1)d,,
由b1b3=b4,得q==b1=2,
∴an=2n-1,.
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2•b2)+…+a2n-1+(a2n+nbn)
=1+S2n+(b1+2b2+…+nbn),
令A=b1+2b2+…+nbn,
则A=2+2•22+…+n•2n,
2A=22+2•23+…+(n-1)•2n+n•2n+1,
∴-A=2+22+…+2n-n•2n+1,
∴,
∵=4n2,
∴
=3+4n2+(n-1)•2n+1.