满分5 > 高中数学试题 >

设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x. (Ⅰ)若...

设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x
(Ⅰ)若函数g(x)的图象在点(0,0)处的切线也恰为f(x)图象的一条切线,求实数a的值;
(Ⅱ)是否存在实数a,对任意的x∈(0,e],都有唯一的x∈[e-4,e],使得f(x)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(Ⅰ)先求g(x)的图象在(0,0)处的切线方程是y=ex,再利用函数g(x)的图象在点(0,0)处的切线也恰为f(x)图象的一条切线,可求a的值; (Ⅱ)先确定函数g(x)的值域,令m=g(x),则原命题等价于对于任意m∈(0,1],都有唯一的,使得f(x)=m成立,而,x∈[e-4,e],,分类讨论,确定函数的单调性,求函数的最值,即可求得结论. 【解析】 (Ⅰ)∵g'(x)=(1-x)e1-x,∴g'(0)=e,∴g(x)的图象在(0,0)处的切线方程是y=ex;(2分) 设y=ex与f(x)的图象切于点(x,y),而,∴且ax-lnx-3=ex,解得a=e2+e;  (5分) (Ⅱ)∵g'(x)=(1-x)e1-x,∴g(x)在(0,1]上单调递增,在[1,e]上单调递减, 且g(0)=0,g(1)=1,g(e)=e2-e∈(0,1),∴g(x)∈(0,1];      (8分) 若令m=g(x),则原命题等价于对于任意m∈(0,1],都有唯一的,使得f(x)=m成立. (9分) 而,x∈[e-4,e], ①当a≤0时,f'(x)<0恒成立,所以f(x)在x∈[e-4,e]上单调递减,要满足条件,则必须有,且fmin=f(e)=ae-4≤0,无解,所以此时不存在满足条件的a;(10分) ②当0<a≤e-1,f'(x)<0恒成立,所以f(x)在x∈[e-4,e]上单调递减,要满足条件,则必须有,且fmin=f(e)=ae-4≤0,解得,∴0<a≤e-1;(11分) ③当e-1<a<e4时,f(x)在区间上单调递减,在上单调递增, 又f(e-4)=ae-4+1>1,要满足条件,则,解得,∴;(12分) ④当a≥e4时,f'(x)>0恒成立,所以f(x)在x∈[e-4,e]上单调递增, 又,所以此时不存在a满足条件;   (13分) 综上有.   (15分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴为半径的圆与直线manfen5.com 满分网相切.又设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E.
(1)求椭圆C的方程;
(2)证明:直线AE与x轴相交于定点Q;
(3)求manfen5.com 满分网的取值范围.
查看答案
若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图).
(Ⅰ)若manfen5.com 满分网,求证:AB∥平面CDE;
(Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.

manfen5.com 满分网 查看答案
设数列{an}中,a1=a,an+1+2an=2n+1(n∈N*).
(Ⅰ)若a1,a2,a3成等差数列,求实数a的值;
(Ⅱ)试问数列manfen5.com 满分网能否为等比数列.若是等比数列,请写出相应数列{an}的通项公式;若不能,请说明理由.
查看答案
已知函数manfen5.com 满分网,且函数f(x)的最小正周期为π.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(B)=1,manfen5.com 满分网=manfen5.com 满分网,且a+c=4,试求b2的值.
查看答案
设存在实数 manfen5.com 满分网,使不等式 manfen5.com 满分网成立,则实数t的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.