满分5 > 高中数学试题 >

设函数f(x)=x2+ax-lnx (a∈R) (Ⅰ)当a=1时,求函数f(x)...

设函数f(x)=manfen5.com 满分网x2+ax-lnx (a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.
(Ⅰ)确定函数的定义域为(0,+∞),求导函数,确定函数的单调性,即可求得函数f (x)的极值; (Ⅱ)求导函数,并分解,再进行分类讨论,利用f′(x)<0,确定函数单调减区间;f′(x)>0,确定函数的单调增区间; (Ⅲ)确定f(x)在[1,2]上单调递减,可得f(x)的最大值与最小值,进而利用分离参数法,可得,从而可求实数m的取值范围. 【解析】 (Ⅰ)函数的定义域为(0,+∞). 当a=1时,. 令f′(x)=0,得x=1. 当0<x<1时,f′(x)<0;当x>1时,f′(x)>0. ∴f(x)极小值=f(1)=1,无极大值…(4分) (Ⅱ)===(5分) 当,即a=2时,,f(x)在(0,+∞)上是减函数; 当,即a>2时,令f′(x)<0,得或x>1;令f′(x)>0,得. 当,即1<a<2时,令f′(x)<0,得0<x<1或;令f′(x)>0,得.(7分) 综上,当a=2时,f(x)在定义域上是减函数; 当a>2时,f(x)在和(1,+∞)单调递减,在上单调递增; 当1<a<2时,f(x)在(0,1)和单调递减,在上单调递增 (8分) (Ⅲ)由(Ⅱ)知,当a∈(2,3)时,f(x)在[1,2]上单调递减, ∴当x=1时,f(x)有最大值,当x=2时,f(x)有最小值. ∴ ∴ma+ln2>(10分) 而a>0经整理得 由2<a<3得,所以m≥0.(12分)
复制答案
考点分析:
相关试题推荐
已知两定点F1(-1,0),F2(1,0),满足|manfen5.com 满分网|+|manfen5.com 满分网|=4的动点P的轨迹是曲线C.
(Ⅰ) 求曲线C的标准方程;
(Ⅱ)直线l:y=-x+b与曲线C交于A,B两点,求△AOB面积的最大值.
查看答案
户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行了问卷调查,得到了如下列联表:
喜欢户外运动不喜欢户外运动合计
男性5
女性10
合计50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是manfen5.com 满分网
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ)求该公司男、女员各多少名;
(Ⅲ)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
manfen5.com 满分网
查看答案
如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD⊥平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.

manfen5.com 满分网 查看答案
已知:manfen5.com 满分网manfen5.com 满分网是坐标平面上的点,O是坐标原点.
(Ⅰ)若点Q的坐标是manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)设函数manfen5.com 满分网,求f(a)的值域.
查看答案
已知双曲线的左右焦点是F1,F2,设P是双曲线右支上一点,manfen5.com 满分网上的投影的大小恰好为manfen5.com 满分网且它们的夹角为manfen5.com 满分网,则双曲线的离心率e为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.