如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求直线CB与平面PDC所成角的正弦值.
考点分析:
相关试题推荐
某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.
查看答案
已知函数
的最小正周期为π.
(Ⅰ)求
的值;
(Ⅱ)求函数f(x)的单调递增区间及其图象的对称轴方程.
查看答案
A.(坐标系与参数方程选做题)在极坐标系中,点
到直线l:3ρcosθ-4ρsinθ=3的距离为
.
B.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R的长为
.
查看答案
形如45132这样的数叫做“五位波浪数”,即十位数字、千位数字均比它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的“五位波浪数”的概率为
.
查看答案