满分5 > 高中数学试题 >

椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=. ...

椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=manfen5.com 满分网
(Ⅰ)求椭圆E的方程;
(Ⅱ)求∠F1AF2的角平分线所在直线的方程.

manfen5.com 满分网
(Ⅰ)设椭圆方程为+=1,把点A(2,3)代入椭圆方程,把离心率e=用a,c表示,再根据b2=a2-c2,求出a2,b2,得椭圆方程; (Ⅱ)可以设直线l上任一点坐标为(x,y),根据角平分线上的点到角两边距离相等得=|x-2|. 【解析】 (Ⅰ)设椭圆E的方程为 +=1 由e=,得,b2=a2-c2=3c2,∴ 将A(2,3)代入,有,解得:c=2, ∴椭圆E的方程为 (Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为y=(x+2), 即3x-4y+6=0,直线AF2的方程为x=2,由椭圆E的图形知,∠F1AF2的角平分线所在直线的斜率为正数 设P(x,y)为∠F1AF2的角平分线所在直线上任一点,则有=|x-2| 若3x-4y+6=-5x+10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=5x-10,即2x-y-1=0. 所以,∠F1AF2的角平分线所在直线的方程为2x-y-1=0
复制答案
考点分析:
相关试题推荐
在长方体ABCD-A1B1C1D1中,E、F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.
(1)求证:A1C⊥平面AEF;
(2)若AB=3,AD=4,AA1=5,M是B1C1的中点,求AM与平面AEF所成角的大小;
(3)在(2)的条件下,求三棱锥D-AEF的体积.

manfen5.com 满分网 查看答案
如图茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(注:方差manfen5.com 满分网,其中manfen5.com 满分网为x1,x2,…xn的平均数)

manfen5.com 满分网 查看答案
已知函数f(x)=(1+cotx)sin2x+msin(x+manfen5.com 满分网)sin(x-manfen5.com 满分网).
(1)当m=0时,求f(x)在区间manfen5.com 满分网上的取值范围;
(2)当tana=2时,manfen5.com 满分网,求m的值.
查看答案
对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上;
②通径为8;
③过焦点的直线与抛物线交于两点的横坐标之积为4;
④抛物线上横坐标为2的点到焦点的距离为6;
能满足抛物线y2=8x的条件是     (填序号) 查看答案
从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.