满分5 > 高中数学试题 >

已知函数. (I)若p=2,求曲线f(x)在点(1,f(1))处的切线方程; (...

已知函数manfen5.com 满分网
(I)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数manfen5.com 满分网,若在[1,e]上至少存在一点x,使得f(x)>g(x)成立,求实数p的取值范围.
(I)求出函数在x=1处的值,求出导函数,求出导函数在x=1处的值即切线的斜率,利用点斜式求出切线的方程. (II)求出函数的导函数,令导函数大于等于0恒成立,构造函数,求出二次函数的对称轴,求出二次函数的最小值,令最小值大于等于0,求出p的范围. (III)通过g(x)的单调性,求出g(x)的最小值,通过对p的讨论,求出f(x)的最大值,令最大值大于等于g(x)的最小值求出p的范围. 【解析】 (I)当p=2时,函数,f(1)=2-2-2ln1=0., 曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2. 从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1) 即y=2x-2. (II). 令h(x)=px2-2x+p, 要使f(x)在定义域(0,+∞)内是增函数,只需h(x)≥0在(0,+∞)内恒成立. 由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,对称轴方程为, ∴,只需, 即p≥1时,h(x)≥0,f'(x)≥0 ∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞). (III)∵在[1,e]上是减函数, ∴x=e时,g(x)min=2;x=1时,g(x)max=2e, 即g(x)∈[2,2e], 1当p<02时,h(x)=px2-2x+p3,其图象为开口向下的抛物线,对称轴4在y5轴的左侧,且h(0)<0, 所以f(x)在x∈[1,e]9内是减函数. 当p=0时,h(x)=-2x,因为x∈[1,e],所以h(x)<0, ,此时,f(x)在x∈[1,e]内是减函数. ∴当p≤0时,f(x)在[1,e]上单调递减⇒f(x)max=f(1)=0<2,不合题意; ( 当0<p<1时,由12,所以. 又由(2)知当p=1时,f(x)在[1,e]上是增函数, ∴,不合题意; 14当p≥115时,由(2)知f(x)16在[1,e]17上是增函数,f(1)=0<218,又g(x)19在[1,e]20上是减函数, 故只需f(x)max>g(x)min,x∈[1,e],而,g(x)min=2,即,解得 综上所述,实数p的取值范围是.
复制答案
考点分析:
相关试题推荐
已知离心率为manfen5.com 满分网的双曲线C的中心在坐标原点,左、右焦点F1、F2在x轴上,双曲线C的右支上一点A使manfen5.com 满分网且△F1AF2的面积为1.
(1)求双曲线C的标准方程;
(2)若直线l:y=kx+m与双曲线C相交于E、F两点(E、F不是左右顶点),且以EF为直径的圆过双曲线C的右顶点D.求证:直线l过定点,并求出该定点的坐标.
查看答案
已知数列{an}是正项数列,其首项a1=3,前n项和为manfen5.com 满分网
(1)求数列{an}的第二项a2及通项公式;
(2)设manfen5.com 满分网,记数列{bn}的前n项和为Kn,求证:manfen5.com 满分网
查看答案
在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,PA=PD=2,底面ABCD是直角梯形,BC∥AD,manfen5.com 满分网
(1)求证:AB⊥平面PAD;
(2)求二面角A-PD-C的余弦值.

manfen5.com 满分网 查看答案
某公司招聘员工,分笔试和面试两部分,笔试指定三门考试课程,至少有两门合格为笔试通过,笔试通过才有资格面试.假设应聘者对这三门课程考试合格的概率分别是0.9,0.6,0.5,且每门课程考试是否合格相互之间没有影响,面试通过的概率是0.4.
(1)求某应聘者被聘用的概率;
(2)有4人来该公司应聘,记被聘用的人数为ξ,求ξ的分布列及期望.
查看答案
在锐角△ABC中,角A、B、C的对边分别为a、b、c,已知2acosA=ccosB+bcosC.
(1)求A的大小;
(2)求cosB+cosC的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.